QUICK GUIDE - GLARE MODULE

Purpose:

The purpose of this document is to help you set up a calculation of glare from Solar PV and 3D objects using GLARE module in windPRO.

Outline of Guide:

- 1. Requirements
- 2. Adding Glare receptor
- 3. Adding Glare reflectors
- 4. Quick view of Glare
- 5. Create a Glare calculation
- 6. Results of Glare calculation

1. REQUIREMENTS

The steps in this quick guide require an installation of windPRO 3.6 with license to GLARE module. For calculation of glare from PV plants, a Solar PV license is required.

Before defining the glare receptors and reflectors you should establish a digital elevation model, either as height contours or as an elevation grid. Also, make sure you have a background map with satisfying resolution.

For more guidance on establishing background maps and a digital elevation model visit the <u>Start using windPRO</u> and the <u>BASIS</u> manual.

2. ADDING GLARE RECEPTOR

Start by inserting a \bigcirc Shadow/Glare receptor in the location on the map for which you want to calculate glare:

A Shadow/Glare receptor can be used for calculation of flicker from wind turbines and glare from PVs and 3D objects. By default, the Shadow/Glare receptor is set to be used in SHADOW calculations. To use the object in a GLARE calculation, you need to select a checkbox in the Glare tab in the object setup and specify the needed inputs:

Shadow/Glare receptor			(Shadov	w Recept	or: 1.	0 × 1.0	Azir
Position	Layers	Shadow	Glare	Descrip	tion		
✓ Use for	or Glare	Calculatio	n				
D	egrees (from sout	h clockv	vise		-180.0	0
Height above ground: 0.0 r						m	
		Fi	eld of v	iew:		360.0	0

3. ADDING GLARE REFLECTORS

There are two types of glare reflectors, for which glare can be calculated:

Solar PV areas – for calculation of glare from solar installations

Quick Guide – Glare module

- 3D objects – for calculation of glare from reflecting surfaces of buildings etc.

For Solar PV glare calculations:

Create layout with the Solar PV object:

For guidance on creating a Solar PV area visit <u>Solar PV:</u> <u>Energy calculation</u>.

It is important that you specify the size of the PV panels and layout of the solar PV accurately. It will have influence on the results:

Solar PV (1)	
Area: Area_1 - Update selected area	Calculation Setup Solar PV Object: Solar PV Update results
Area info This area: 1.6 ha 2459 panels 42% GCR 1 MW All areas: 1.6 ha 2459 panels 42% GCR 1 MW PV Panels Layout Forel Oversitation: 	@ Calculation Properties Panel Panel nome: CL/Users/imim/Documents/windPR0 Data/PVPanels/2023/EMD-Gen ···· ···· Panel nome: CL/Users/imim/Documents/windPR0 Data/PVPanels/2023/EMD-Gen ··· ··· ··· Pranel (NUM): £100 (W/m2) Calculate this area B/facial ···
Table design: Horzontal: 1 Vertical: 1 1.30x2.17m Table position setup Table angle © Fixed bit. Tit angle (*): 99.4 0 Tracking Tracking setup	Inverter Max. effciency: 01.50 Inverter size (NM): 5.3 Max. effciency: 01.50 AC/DC ratio spec: 0.3 AC/DC ratio: 0.3 No. of inverters: 270 Total AC power (NW): 1.255 Edt Other
Azimuth (°): 180.0 Ground clearance (m): 0.46 Row spacing (m): 5.06	☐ Use reference panel for calculation ☑ Take Albedo from calculation setup Shading visualizer

For general glare calculations of 3D objects: Insert a Visual Element object:

Here, you can import the 3D object from a .dae file:

In the library available in windPRO, two predefined models are available:

> Documents > WindPRO Data > 3D.dae_models > Glare Reflectors						
folder						
Tolder						
Name	Date modified	Туре				
VerticalRect1x1m.dae	16/05/2023 06.07	DAE File				
Cube1x1x1m.dae	16/05/2023 06.07	DAE File				

The first is a vertical rectangle, which can be used for modelling a façade of a building. The second one is a cube, which can be used for modelling of a rectangular building with all facades being reflecting. You can also use other .dae files in Glare calculation.

Select the cube to model a greenhouse. The default dimensions of the cube are 1x1x1m. Modify the size by specifying a scaling factor in the 3D object. Also, specify the rotation of the object around z-axis:

SD Object (3D Object: (1))	
Position Layers 3D Object Preview DAE	Description
Object file (dae)	
C:\Users\mim\Documents\WindPBO Dat	a\3D dae models
c. (oscistinint) becaments (windi ito bat	a (sprade_models
Orientation	Scaling
Rotate: -10.00 °	O No scaling
(Around Z-axis)	Scale by factor
Row of objects	Scale by factor
	With factor 5 0000
Number of:	Width factor: 5.0000
	Depth factor: 3.0000
	Height factor: 3.0000
	-

For graphical presentation of glare in the reports, select the symbol color for the 3D object in the Position tab:

Quick Guide – Glare module

4. QUICK VIEW OF GLARE

For a receptor, you can quickly view glare coming from all reflectors defined in a project – Solar PV areas and 3D objects. It is a fast way to assess if there is any glare in the location of the receptor. Default calculation settings are used in the quick view.

Right click on a receptor and choose "Show glare":

A glare viewer will open, where you can see the sun positions for which glare is visible at the receptor location. The colors marked in the graph correspond to the color of the Solar PV areas and 3D objects in the project:

5. CREATING A GLARE CALCULATIONS

To create a new Glare calculation, select GLARE from the Solar tab:

File	Definitions	Geo Data	Climate	Energy	Loads & Operation	Environment & Visual Solar
<u></u>	SOLAR PV	Solar Optim	ze 🛃	GLARE		Link streetview to Photomont
Power Conversion			Enviro	onment		Visual

A window with the Glare calculation setup will open. In the Main tab, you can specify what should be included in the calculation and the settings for the calculation. In this quick guide example, please keep the default settings and calculate the occurrence of glare including beam spread:

in Panels characteristic Rece	tors PV objects	3D object reflectors	Description		
me					
Calculate:					
Occurrence of glare					
✓ Include beam spread					
Include intensity of alar	e 🔒				
	-				
Advanced settings					
Advanced sectings					
Distance limit:	3,000 m fro	m PV Table			
Grid resolution:	0.05 °				
Timestep for calculation:	1.0 Minut	es			
Glare is not considered if the angle between					
reflection and the sun is	0.0 °				
less than:					
Reference year:	2023 🌲				

In the Panel characteristic tab, you can choose the type of coating of the glass used in PVs and the 3D object. In this calculation, use the default setting – smooth glass with no anti-reflection coating:

GLARE (Reflections from	PV panels and	d 3D objects)		
Main Panels characteristic	Receptors	PV objects	3D object reflectors	Description
Beam Spread	ned spread a	angle g, smooth gla	0.0 °	

In the following tabs in the calculation setup, select the receptors, Solar PV objects and 3D objects to be used in the calculation. Once you have selected the objects you created previously to be used in the calculation, start it by pressing OK.

6. RESULTS OF GLARE CALCULATION

There are currently four reports available for the Glare calculation:

*	Name				
Þ	V GL GL	ARE:			
		Main result			
		Occurrence sun angles			
		Occurrence time			
		Мар			

Main result will summarize the calculation setup and will provide the main result – total duration of glare during the year and maximum daily glare duration:

Calculation result			
Glare receptor	Total time with glare in a year	Maximum daily glare duration	Day with max glare duration
No. Name	[h/year]	[min/day]	[Date in DST]
1 Glare Receptor: Azimuth: 172.7° Field of view: 360.0° (1)	64.4	24.0	8 May 07.32-07.56

Occurrence sun angles is a graph representing sun positions for which glare can be observed. It is a graph similar to the one available in the Quick view:

Occurrence time translates the above graph to a more understandable form, where glare times are shown during a year. The graph is created considering the daylight-saving time:

Finally, the Map report presents the receptors and reflectors on the map. For Solar PV areas the PV panels causing glare are highlighted:

Result to file per receptor is available for the calculation. It contains a list of timesteps for which glare is visible at the receptor, together with details about incidence angle on the reflecting surface and sun position defined by sun altitude and sun azimuth:

Time	Glare table count	Incidence Angle	Sun Azimut	Sun Altitude	Irradiance
		0	•	•	W/m2
12/03/2023 18.06	1	0.68026	262.90304	0.2675	0
12/03/2023 18.07	1	1.6587	263.11269	0.13224	0
13/03/2023 18.04	1	0	262.75265	0.83213	0
13/03/2023 18.05	1	1.28658	262.96247	0.69692	0
13/03/2023 18.06	1	1.9863	263.17225	0.56165	0
13/03/2023 18.07	1	2.49703	263.38199	0.42632	0
13/03/2023 18.08	1	2.91971	263.59168	0.29093	0
13/03/2023 18.09	1	3.28846	263.80133	0.15548	0
13/03/2023 18.10	1	3.61981	264.01095	0.01998	0
14/03/2023 18.04	1	1.6927	263.02342	1.12611	0
14/03/2023 18.05	1	2.27087	263.23331	0.99082	0
14/03/2023 18.06	1	2.72913	263.44317	0.85547	0
14/03/2023 18.07	1	3.12075	263.65297	0.72007	0
14/03/2023 18.08	1	3.4684	263.86274	0.58461	0
14/03/2023 18.09	1	3.7842	264.07247	0.44909	0
14/03/2023 18.10	1	4.07559	264.28215	0.31353	0
14/03/2023 18.11	1	4.34746	264.49181	0.17791	0