

Different models for each scale

Micro scale models:

- Typical grid cell: 10s of m
- Typical use in siting/micro-siting
- Models like: WAsP, WEng, "CFD" (LES, DES, DNS....)

Meso scale models:

- Typical grid cell: several km
- Increased use in wind energy (hindcast & forecast)
- Needs input from global models!
- Possible input to microscale models

Global/Synoptic scale models (NWP)

Typical grid cell: 100-1000 km

EMD

• Research and met offices, e.g. NCEP, DMI,....

Micro scale models

Two groups of micro scale models:

Linearized models

- WAsP
- WEng (WAsP Engineering)
- MS Micro
- •....

• ...

Non-linear models (referred to as "CFD")

- WAsP CFD (Ellipsys)
- Windsim
- Meteodyn

EMD

C	Micro scale models (WAsP)
	The WAsP model - General description
	 Separated handling (superposition) of: Terrain speed up Roughness Atmospheric stability
	WAsP flow = Simple log-profile (flat, uniform roughness) +Terrain corr. (neutral) +Roughness corr. (neutral) +Stability corr. (neutral/unstable/stable)
EMD	

Meso scale models

Meso scale models - not just flow models...

- Numerical Weather Prediction (NWP) hindcast/ forecast
- Based on a physical atmosphere model w/ transport equations e.g.:
 - Momentum
 - Moisture
 - Heat
- Forcings are imposed as input from synoptic models
- Often several representative runs must be made (not just an average run like for WAsP)
- Out-put samples may be hourly (like Merra), but..
 - A coarse grid (~ 50km) equivalates 4-5h temporal averaging
 - No "micro scale" effects are properly modelled!

EMD

Atmospheric stability?

Stability depends on dT/dZ:

- dT/dZ > adiabatic:
 ~ Heating from the ground
 Typical: day, summer, cumulus
- dT/dZ < adiabatic:
 Cooling from the ground
 Typical: night, winter, low wind
- dT/dZ = adiabatic: Adiabatic lapse rate ≈ 1°C/100m
 Typical: overcast, high wind

EMD

