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Abstract: The need for an efficient MCP toolbox has now been met by implementation of four different MCP methods 
into the WindPRO software tool for planning and projecting of wind farms. The four MCP methods vary in complexity, 
computational requirements and applicability – as such – the analyses herein are supported by two case studies for 
illustrating these subjects. An outline of the theoretical background of the WindPRO implementation of the MCP 
methods: Linear Regression, Matrix MCP, Weibull Scale and Wind Index MCP are provided as well as recommendation 
on where to use the various methods.    
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1. Introduction and Overview 
 
Various measure-correlate-predict (MCP) methods and 
algorithms have been studied using wind data from a 
number of potential wind farm sites. Some of the 
algorithms and methods have been improved using 
probabilistic methods, and have then been implemented 
into the WindPRO software tool for planning and 
projecting of wind farms. The long term wind data is 
taken from nearby meteorological stations as well as 
data from the NCEP/NCAR reanalysis dataset. Below – 
in Section 2 - is a theoretical outlook of the methods 
included in WindPRO, followed by two case studies in 
Section 3. 
 
The MCP module for WindPRO includes the features 
below, enabling completion of a full MCP analysis 
within a few hours time: 
 
• Long-term data: NCEP / NCAR data extraction [1] 
• Measure: Load of time series data with filtering 
• Correlation: Extraction of concurrent data with 

correlation analysis 
• Predict: Linear Regression, Matrix method, Weibull 

Scale and Wind Index 
• STATGEN – generation of wind statistics directly 

from the MCP result 
 
Overview-reports and detailed reports for each of the 
methods are available. The global set of NCEP/NCAR 
long-term reference data is directly available. Data used 
by the MCP-methods are contained in the WindPRO 

Meteo objects. The result from the analysis is – 
typically – a wind statistics generated using WAsP. 
 
2. MCP Models 
 
Below is a brief theoretical overview of the different 
MCP methods currently implemented in the WindPRO 
software. This section cover the specific WindPRO 
implementation of the methods, other authors may have 
chosen to implement the methods in a different manner. 
 
2.1 Regression 
 
The regression MCP method holds the traditional linear 
regression MCP analysis as a specialized subset of 
other regression models using polynomials of other 
orders. Specializations of the polynomial-fitting 
methods are also included, provided in order to comply 
with methods used or suggested by other authors.  

 
Figure 1: Linear fitting of wind speeds (x: winds at ref. 
position, y: winds at site position) 
 

 



One of the specializations is here an MCP method 
forcing the regression line through the origin (0,0). 
However, this option should be used only with caution 
as it typically provides a significantly poorer fit to the 
data than the methods where a non-zero intersection 
with the y-axis is allowed. 
 
The regression MCP methods in WindPRO are 
improved over a traditional linear regression analysis, 
as a model for the distribution of the residuals is also 
included. This model allows the regression MCP 
method to capture the energy content in the MCP 
corrected site wind distribution much better than 
regression models without this option. Experience has 
shown, as much as 10% energy can be erroneously lost 
in the long-term correction if the model is run without 
this option. On the other hand, the model may also feed 
too much energy into the long-term corrected data 
series, especially if the distribution assumption of the 
residuals is violated. 

Table 1: Regression Models in WindPRO. 

Model description Model eq., f(x) 
No model Y = x 
Constant Y = β0 
Linear - 1st order polynomial Y = β1⋅x+β0 
Linear regression, though (0,0) Y = β1⋅x 
2nd  order polynomial Y =β2⋅x2+ β1⋅x+β0 
2nd order polynom. through (0,0) Y =β2⋅x2+ β1⋅x 

 
2.1.1 Regression Model 
 
Regression modelling, where only one independent (x) 
and one dependent (Y) variable is present, is based on 
the following equation: 
 

  exfY += )(
 
where   Y is the dependent variable 
 x is the independent variable 
 f(x) is the regression model 
 e is a random error (residual)  
 
The regression model could be polynomials of any 
order or other models, but traditionally a linear model is 
assumed, as this model has been found to give 
reasonable fits for wind energy estimation. In the case 
of a regression MCP analysis, the independent variable 
could be the wind speed measured at the reference 
position. The dependent variable (Y) is then the wind 
speed at the local WTG site position. 
 
The following regression models are currently 
supported in the WindPRO implementation: 
 

 
The regression parameters are estimated through a least 
squares algorithm, utilizing an Amoeba optimization 
algorithm described in Press et al [5]. The distributions 
of the random errors may, according to Ross [2], 
reasonably be assumed to follow a zero mean Gaussian 
distribution, e ∼ N(0,σ). However, the distribution of 
the residuals should be visually checked, so that the 
assumption is verified as reasonable. This is needed, as 
the random variable model for the residuals is included 
in the MCP-modelling in order to give the right energy 
levels in the new MCP-corrected time series. Please 
note, that currently the distribution of residuals is 
conditioned on the reference wind direction only. Thus, 
conditioned on the reference wind direction, the 
residuals should be independent on the reference wind 
speed. 
 

 
Figure 2: Wind Speed Fit (Left) with the Distribution of 
the Residuals (plot captured from WindPRO). 
 
2.1.2 Calculating the Long Term Corrected Data 
 
The long term corrected meteorological data is 
calculated using the regression model (transfer 
function). All of the samples in the long term reference 
series are transferred and then the residuals are 
calculated using a Monte-Carlo simulation technique. 
The result is a long term corrected wind distribution 
through an ‘artificial’ time series. For details on Monte-
Carlo simulation, see Sørensen [3].  

 



2.2 Weibull Scale 
 
The Weibull Scale method is a very simple empirical 
method, which does its linear manipulation directly on 
the Weibull form and scale parameters (A,k) as well as 
adjustments on the frequency distribution. The Weibull 
method has the advantage, that it will match the nature 
of the wind at most places, but beware that application 
of this method should be done with caution on locations 
with significant non-Weibull distributions as well as 
when the modification of Weibull parameters and 
frequency needed is very large.  
 
Also, the scaling (which is linear), is a quite simple and 
radical assumption. A very good directional distribution 
correlation is needed for the calculation to make sense. 
The method works best when only small corrections are 
needed. The Weibull Scale method presumes that the 
relationship between the Weibull distribution 
parameters and the frequency follow the general 
relation: 
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where  λ is the distribution parameter under  

consideration (Weibull A, k) 
 
In the case of considering the frequencies, the modified 
long-term frequency distribution must be normalized to 
100%, i.e. for the N sectors under consideration: 
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where  f is the frequency 
 N is the number of sectors (typically 12) 
 i is the sector under consideration 
 
Weibull Scale MCP primarily requires look-up in the 
appropriate Weibull distributions, calculating the 
correction table and finally doing the calculation of the 
long-term distribution. 
 
 
 

2.3 Matrix Method 
 
The matrix method in WindPRO models the changes in 
wind speed (speed-up) and wind direction (wind veer) 
through joint distributions fitted on the ‘matrix’ of wind 
speed bins and wind direction bins.  
 
The parallel period of measured wind data is used to 
calculate the set of non-linear transfer functions, used 
for transferring wind speeds and wind directions from 
the reference site to the site position. Since real 
measurements will suffer from data missing in bins in 
the dataset, this method needs a way to substitute the 
missing input bins. In WindPRO, polynomials are fitted 
to the statistics of the sample data enabling this 
interpolation/extrapolation. The user may choose to 
either use polynomials fitted to the data statistics or, 
where appropriate, to use the measured raw samples 
directly when doing the matrix MCP. 
 
A basic assumption of the matrix method is that the 
long-term site data (wind speed and direction) can be 
expressed through the simultaneous measurements of 
on-site data and reference site data. Actually this 
relationship is basically modelled through a joint 
distribution between the two variables wind speed-up 
and wind veer. How this joint distribution is modelled 
should actually depend on the data in question, but 
experience using the WindPRO MCP, suggests that a 
combination of binned sample distributions and 
modelled joint Gaussian distributions seem to work 
quite well. 
 
The transfer model, given as a conditional distribution, 
is actually the key distribution in the generalized matrix 
method. The distribution gives the relationship between 
the site wind climate and the reference wind climate. 
When applying the matrix method this conditional 
distribution is stipulated to hold regardless of the time 
frame considered. 
 
2.3.1 Matrix MCP Modelling 
 
The Matrix MCP in WindPRO models the wind speed-
up and the wind veer as functions of the wind speed and 
wind direction on the reference site, see Figure 3 and 
Figure 4. Two modelling options are available in 
WindPRO, either to use the measured samples 
themselves (through a bootstrap re-sampling technique) 
or alternatively to use the fitted polynomial model 

 



(actually through a joint Gaussian random variable). If 
no (or only a few) sample data is available in a 
particular bin, then the polynomial model is always 
used. 
 

 
Figure 3: Sample data and first order model for the wind 
speed-up (x: wind at reference, y=speed-up). 

 
Figure 4: Sample data and first order model for the wind 
veer (x: wind at reference, y=wind veer). 
 
The model is based on the joint distribution of the 
measured wind speed-ups and wind veers. Thus, for 
each measured sample it is necessary to 
calculate/measure pairs of the two quantities (a pair is 
data with identical timestamps): 
 

referencesite uuu −=Δ  

referencesite θθθ −=Δ  

 
where Δu is the wind speed-up 
 usite the wind speed at the site position 

ureference the wind speed at the reference site 
Δθ is the wind veer 
θsite the wind veer at the site position 
θreference the wind veer at the reference site 

  
The joint distribution of fΔu,Δθ is then modelled 
conditioned on the wind speed and the wind direction 
on the reference site. These joint distributions are 
represented as either through the samples (bootstrap 
model) or through a joint Gaussian distribution, see 
Figure 5. In the case of the joint Gaussian distribution, 
the distribution parameters – mean, standard deviation 

and correlation - are modelled through polynomials of 
any (user defined) order.  
 

Figure 5: Bivariate Gaussian Distribution: Example of 
the Joint Speed-Up and Wind Veer Distribution. 
 
2.3.2 Data, Distributions and Statistical Moments 
 
When the data has been measured and a match between 
the short-term site data and the short-term reference 
data has been established, then the samples are sorted 
into bins with the resolution 1 m/s and 1 degree. Since a 
1-degree angular resolution is too small in most cases, it 
is possible to feed in data from a larger window, 
typically pre-set to around 30 degrees. The result from 
this binning is a set of joint sample distributions of 
wind veer and wind speed-up. Since the data is binned 
with wind speed and wind direction, these sample 
distributions are said to be conditioned on the mean 
wind speed at the reference position and the wind 
direction on the reference position. The calculated 
distributions are used directly in a bootstrapping 
technique (see Efron & Tibshirani [4]) when doing the 
Matrix MCP calculation. 
 
Based on the sample distributions, the following sample 
statistics are calculated for the wind veer and the wind 
speed: 
 
• Mean value 
• Standard deviation 
• Skewness 
• Kurtosis 
• Correlation 
 
2.3.3 Polynomial Model of Statistical Moments 
 
In order to enable interpolations and extrapolations into 
bins where no data is present, we choose to 
parameterize a model fitted to the sample distribution 
statistics. This parametric distribution is represented by 
the two first statistical moments and the correlation, and 
it is assumed that a joint Gaussian distribution is a 

 



reasonable distribution assumption. Note, that even if 
the Gaussian distribution assumption may seem a bit 
crude, then – in most cases, the parametric model will 
only be applied in cases where limited or no sample 
data is available. Thus, the influence of this assumption 
is limited, as most long-term corrected samples are 
typically based on the re-sampling approach. 
 

 

 
Figure 6: Sample Statistics (Top) and Polynomial 
Model (Bottom). Here a model of the mean speed-up. 
 
The mean, standard deviation and correlation are now 
modelled as ‘slices’ of polynomial surfaces: 
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where P denotes the sample statistical moment 
(or correlation) considered 
n is the order of the polynomial 
ai is the polynomial coefficients  
(which are also functions of θreference) 

 

An example of this modelling is shown in Figure 6 
(bottom). where the surface model seems to capture the 
trends in the sample data quite well (bottom of Figure 
6). In this case 1-st order polynomials are used in all 
cases except for the mean wind veer where a 0-th order 
polynomial is used. Note, that the user may choose a 
polynomial of any order, if this fits the data more 
accurately. 
 
2.3.4 Calculating the Long Term Corrected Data 
 
As (partly) in the case of regression MCP (see Section 
2.1), the long-term corrected meteorological data is 
calculated using Bootstrap and Monte-Carlo simulation 
techniques, i.e. probabilistic methods enabling 
generation of the long-term corrected wind distribution 
through an ‘artificial’ time series. Again, for details on 
the Monte-Carlo simulation, see Sørensen [3], for an 
introduction to the Bootstrap, see Efron et al [4]. 
 
2.4 Wind Index MCP 
 
The index correlation method is a method creating the 
MCP analysis by means of monthly averages of the 
energy yield, thus disregarding the directional 
distribution of the winds. Even though this method may 
seem rather crude and primitive when comparing to 
other more advanced MCP methods, which takes the 
wind veer into account; this method has its advantages 
in stability and performance as it may even succeed in 
the cases where other MCP methods seem to fail. This 
is due to the fact, that the wind indexes are related 
directly to WTG energy yield and that the method 
allows the production calculation to be completed using 
actual measured data before applying the correction.  
 
The Wind Index MCP method in WindPRO offers the 
opportunity to calculate the wind indexes using real 
power curves from the wind turbines included in the 
wind turbine catalogue in WindPRO. Also a generic 
power curve based on a truncated squared wind speed 
approach may be chosen. When the wind indexes are 
calculated, the MCP correction is done on the estimated 
WTG energy yield, i.e. by multiplying the production 
estimated with a correction factor based on the 
difference in the wind index from the short-term site 
data to the long-term site data estimate. 
 
 
 

 



2.4.1 WTG Power Curve in Wind Index MCP 
 
The energy level in the wind is proportional to the third 
power of the wind speed. However, since the power 
curve of a WTG is a non-linear function of the wind 
speed the wind index is typically modelled as either  
 

1. Through a generic power curve, e.g. the 
square of the wind speed for wind below the 
stall onset and a constant above the stall 
onset: 
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2. From a real power curve, P(u), see an 
example from a Vestas V44 in the Figure 7. 

 

 
2.4.2 Calculating the Wind Index 
 
The average power output, W, is calculated using the 
modelled or measured power curve, P(u): 
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where  N is the number of measured wind 

speeds within the period considered 
ui is the i-th wind speed measurement 
(typically 10 minute mean wind speeds) 

 
In order for the power output (calculated for site and 
reference) to be comparable they must be based on a 
similar mean wind speed. This is done by assuming a 
sector uniform shear that can be applied so that both 
concurrent mean wind speeds are set to a fixed user-
inferred wind speed, typically the expected mean wind 

speed at hub height. The individual wind speed 
measurements are thus multiplied with the relevant 
factor. 
 
Both full time series wind speeds will be adjusted with 
the same ratio as the one applied to the respective 
concurrent time series. The argument for this operation 
is that the variations in wind speed will only be 
interpreted correctly in terms of wind energy if a 
comparable section of the power curve is considered.  
 
In WindPRO Wind Index MCP four different average 
power outputs are calculated. These are: the full 
reference WRf, the concurrent reference WRc, the 
concurrent site WSc, and the full site WSf. Please note 
that in this method the entire measured site data set is 
retained with original frequency and period length. The 
power output for the full reference, WRf, is set to index 
=100 (unless specifically stated otherwise) and the ratio 
in power output between WRf and WRc then gives the 
index of the concurrent period so that 

 
Figure 7: Power Curve from Vestas V44 and Simple 
Power Curve (scaled to fit the maximum power of the 
Vestas WTG). 
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where I is the wind index of the relevant period. 
 
The assumption is now that the index for the concurrent 
period at the reference is the same as the index for the 
concurrent period at the site. That this is the case needs 
to be tested through a correlation analysis. 
 

RcSc II =  

 
Knowing the index of the concurrent period on the site 
means that it is possible to find the index for the entire 
site measurement period, including the original 
frequency of measurements. The result is the wind 
index for the measurement period, which is given by 
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2.4.3 Wind Index Correlation  
 
In order to make the crucial assumption that the wind 
index for the concurrent period of the reference is 

 



identical to the index of the concurrent period of the site 
it is necessary to establish whether there is correlation 
between the two data sets. This can be established using 
the monthly wind index.  
 
Wind indexes are calculated for each month during the 
concurrent period comparing the monthly average 
power output to that of the entire concurrent period. 
This is done for both reference and site data. 
 

 
When the monthly wind indexes are plotted against 
each other like shown in Figure 8 the course of the 
indexes must be similar. If they are divergent it is a sign 
that the climate at the two locations is different and the 
assumption of similar index for the same period may 
fail. Similarly does the assumption that the reference 
data are representative for long-term conditions at the 
site. The correlation is measured in either correlation 
value of the monthly indexes or as a standard error of 
the difference between the index graphs. 
 
2.4.4 Wind Index Correction  
 
When the wind index for measured site data has been 
found, it is converted to a correction factor 
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where CSf is the correction factor to the full site data 
 
This correction factor needs to be applied to the final 
result of the energy calculation. If a wind statistic is 
created in relation to the long term correction 
calculation the correction factor is automatically 

embedded in the resulting windstatistic and will be 
applied whenever the windstatistic is used. The term 
used for the correction factor in WindPRO is the 
Regional Correction Factor (RCF). 
 
3. Case Studies 
 
In this paper we consider two sites: one in Ireland and 
one in Denmark. Both sites are evaluated using long 
term data from ground stations and from NCEP/NCAR 
reanalysis data [1]. 

 
Figure 8: Monthly Wind Index for Reference and 
Concurrent Data.  

 
In these analysis’ we focus the presentation on 
aggregated results only. However most of the methods 
allow a very detailed analysis of results, were the long 
term distributions are compared directly versus the 
measured joint distribution of wind speed and wind 
directions.  
 
3.1 Doing the Comparison: Using a WTG Index 
 
In order to do realistic calculations and to draw 
conclusions about model performance, we use a so-
called wind turbine generator index (WTG index) to 
compare models. This index is chosen, as it reflects the 
wind energy potential at the site, as seen from a WTG 
point-of-view. The index is often used in the WindPRO 
software [7] to compare different WTG performances 
through the energy levels found in the calculated wind 
statistics. It is calculated from the wind statistic using a 
generic power curve with a roughness class 1 position 
and a 50 meter hub height. The WTG index level is 
relative (in percent) to 1025 kWh/(m2 year).  
 
The wind statistics are actually calculated using the 
WindPRO / STATGEN feature which executes a WAsP 
[6] calculation. An execution thus requires a digital 
terrain model as well as a full roughness classification 
of the site. Also a meteorological mast position and 
height is needed for the local site data, which the 
NCEP/NCAR data lacks, disqualifying this dataset for a 
direct WTG Index analysis as local data. However, as 
reference data, the NCEP/NCAR data is a very valuable 
source. 
 
3.2 Case: Cronalaght, Ireland 
 
This site is situated in Donegal, Ireland at about N 55.1º 
W 8.2º. Five Vestas V39 600 kW turbines were erected 
in a phase one development, later – in year 2000, three 

 



V47 660 kW were added. The Vestas V39 turbines hold 
more than 5 years of production data and this data were 
adjusted to reflect the long term climate for the site.  
 
An overview of the site is shown in Figure 9 and Figure 
10. Note the meteorological mast is situated about 1800 
meters to the west of the site. 
 

 
Figure 9: Part of Digital Height Model and WTGs. 

 
Figure 10: Part of Roughness Classification and WTGs. 
 
For energy yield analysis we have the following wind 
data available: 
 

 

3.2.1: Analysis Utilizing WTG Production Data 
 
Doing a WAsP calculation using the local 
meteorological mast data and comparing with the 
measured production figures, shows that the measured 
production is only about 89% to 93% of what is 
calculated when using the local data. This means, that 
the ‘WTG Energy Level’ actually should be in the 
range from 146.5% to 153.1% instead of the 164.6% in 
the Table 2. This significant over-estimation of the 
calculated production could be caused by long-term 
effects. First, when doing the MCP analysis, it is very 
important visually to check the correlation between site 
and regional data, see Figure 11. This figure shows 
average monthly wind speeds of 1 year concurrent 
period. The correlation seems very fine, allowing us to 
continue the analysis. 
 

 
Figure 11: Correlation (monthly wind speed averages): 
Local Data (blue) vs. NCAR data (red) 
 
Doing the four different MCP methods utilizing both 
the full 14 years of Malin Head time series data and the 
17 years of NCAR data , this yield the results as shown 
in Table 3.  
 

MCP Method WTG Energy 
 Malin NCAR 

Linear 152.9% 152.2% 
Matrix MCP 152.4% 151.4% 
Weibull Scale 152.4% 153.1% 
Wind Index Method 150.1% 152.4% 
Table 3: MCP Corrected Local Data using Malin 
Head and NCEP / NCAR Data. 
 
The results seem very reassuring; all methods succeed 
in giving results within the very tight limit that the 
production analysis provided us (147%-153%).  

Source Period WTG Energy 
Local mast – 30 m 1994-1996 164.6% 
NCEP/NCAR 1990-2007 N/A 
Regional mast  1973-1979 143.8% 
Regional mast   1991-2004 N/A 
Table 2:Cronalaght Case: Data Sources. 

 
3.2.2 Slicing Analysis – Model Performance 
 
An additional analysis option is to test the MCP 
methods versus a known result – a so-called self 

 



prediction. We here choose to ‘slice’ one year of data 
from the local measurements and to slice the 3 years of 
concurrent data (1994-1996) from the regional mast and 
the NCEP/NCAR data. In that respect, our ‘long term 
reference goal’ is actually the 164.6% WTG energy 
level that was measured. The measured local wind 
speed in 30 m height in the 3 year period was 9.4 m/s. 
Now, applying different MCP methods and adjusting 
some of the different options available in the methods 
yield the results shown in Table 4 and Table 5.   
 

 
Using the regional ground data in the MCP analysis, 
Table 4, yields an average WTG energy yield equal to 
162.8%, which is only 1.1% from the local measured 
level in Table 2. The standard deviation of the WTG 
indexes is 2.7%.  
 

 
The NCEP / NCAR data in the MCP analysis yields an 
average WTG energy level of 165.7% which is within 
0.7% of what is measured. In this case, it seems, that 
the NCEP / NCAR data works really fine on this site. 
The standard deviation is 2.1%. 
 
3.3 Case Alsted / Risø, Denmark 
 
Two meteorological masts at Alstedgårde and Risø on 
Zealand, Denmark are used to test the various MCP 

methods. We choose to slice one year of data from the 
44 m height on the Risø mast and then to use the 10 
meter data from Alstedgårde as long term reference data. 
Also the NCEP / NCAR data is tested as the long-term 
data.  

Source Period WTG Energy 
Alsted mast – 10 m 1996-1998 108.6% 
Alsted mast – 10 m 1996 103.8% 
Risø mast – 44 m  1996-1998 83.8% 
Risø mast – 44 m 1996 76.7% 
NCEP / NCAR 1987-2007 N/A 
Table 6: Alstedgårde/Risø Case: Data Sources. 

MCP Method Wind 
Speed 

WTG 
Energy 

Linear – no resampling 9.31 m/s 163.8% 
Linear – residual resampling  9.50 m/s 167.5% 
Linear – no resamp. – 1 sector  9.23 m/s 162.0% 
Matrix  9.23 m/s 160.4% 
Weibull Scale 9.30 m/s 162.4% 
Wind Index Method N/A 160.4% 
Table 4: MCP Corrected Local Data using Regional 
Ground Data (Malin Head). 

 
In Table 6, it is seen – for the same period considered – 
that the Risø mast holds a significant lower energy level 
than the Alsted position. 
 

 
Figure 12: Part of Central Zealand, Denmark. Blue 
markers denote existing WTG. Arrows show the masts. 

MCP Method Wind 
Speed 

WTG 
Energy 

Linear – no resampling 9.46 m/s 166.9% 
Linear – residual resampling  9.56 m/s 169.0% 
Linear – no resam. – 1 sector  9.44 m/s 165.8% 
Matrix  9.34 m/s 163.3% 
Weibull Scale 9.44 m/s 165.5% 
Wind Index Method N/A 163.7% 
Table 5: MCP Corrected Local Data using NCEP / 
NCAR Data. 

 
3.3.1 Predicting the Risø Mast using Alsted Data 
 
The measured 3 year level to be used in the validation is 
the 83.8% WTG Index level as shown in Table 6. The 
corresponding measured wind speed is 6.24 m/s The 
‘sliced´’ year has a level of 76.7%, so we would expect 
that all MCP long term corrections yields an increase in 
the energy level. Below – in Table 7 – the results using 
the Alsted mast as long-term reference.  
 

 



 
As shown in the Table 7, the models perform as 
expected all increasing the WTG energy levels.  The 
average WTG Index is 81.8% which is 1% lower than 
what is measured on the site. The coefficient of 
variation is 3.1%, showing that not all models perform 
equally well - even if the trend is correct for all methods.  
 
3.3.2 Predicting the Risø Mast using NCAR Data 
 

 
When comparing the Table 8 with the 83.8% long term 
level in Table 6, then it is obvious that the Matrix 
Method and Weibull Scale method fails. This is due to 
the very sparse long-term reference data set, with only 
one sample per 6 hours. It is our experience that the 
Wind Index method is much more robust when 
applying such datasets. 
 
4. Conclusion and Recommendations 
 
The current paper outlines the implemented MCP 
methods in WindPRO. For additional details on the 
implemented methods and alternative MCP methods we 
refer to the WindPRO manual [7] and the references 
[8]-[11]. 
 
The WindPRO MCP methods offer an easy access to a 
range of MCP methods and a valuable toolbox, which 
again provides an easy, fast and accurate analysis 
within a few hours time.  

 MCP Method Wind 
Speed 

WTG 
Energy 

Linear – no resampling 6.08 m/s 79.0% 
Linear – residual resampling  6.23 m/s 83.7% 
Regression – 2nd order poly. 6.23 m/s 83.6% 
Matrix - resampling 6.14 m/s 81.2% 
Matrix – polynominal model 6.31 m/s 85.7% 
Weibull Scale 6.09 m/s 79.5% 
Wind Index Method N/A 79.7% 
Table 7: Risø 44m data corrected using Alsted Data. 

As indicated in the above case studies, in general all 
models show the right trends when modifying the local 
data into a modelled long term representative dataset. 
However not all models perform equally well in all 
situations. Based on our experience applying the 
models to a wide range of sites, we suggest using the 
regression model and the matrix model for sites where 
both local site data and reference ground data are 
available as high quality and detailed time series. On 
sites, where the data is of limited quality and/or the data 
are available on only sparse intervals (e.g. the 6 hourly 
NCEP/NCAR data), we suggest using the Wind Index 
Method. 
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