Handbuch PARK

From Wiki-WindPRO
Jump to: navigation, search

Zur deutschen Hauptseite | Alle deutschsprachigen Seiten


PARK ist das zentrale Modul im Energieberechnungs-Kosmos von windPRO. Ziel einer PARK-Berechnung ist in der Regel die Ermittlung der erwarteten Jährlichen Energieproduktion (AEP, Annual Energy Production) einer Windfarm.


Eine PARK-Berechnung setzt sich aus drei Teilen zusammen:

  • Die Ermittlung der Windbedingungen für jede WEA-Position – dies kann mittels eines Strömungsmodells (z.B. WAsP) erfolgen, wobei die Definition der Rahmenbedingungen über ein Terraindatenobjekt erfolgt. Es kann aber auch auf vorab berechnete Windressourcenkarten zurückgegriffen werden (siehe Modul RESOURCE). Alternativ kann die Scaler-Methode verwendet werden, um aus Windmessungen oder Mesoskalen-Zeitreihen in einem METEO-Objekt die Windbedingungen für die WEA-Positionen zu modellieren.
  • Die Anpassung der Leistungskennlinien der WEA an die lokalen Bedingungen – dies wird regelmäßig auf Basis der Temperatur und der Höhe ü.NN. geschehen, Unterschiede ergeben sich zum einen darin, ob mit Jahresmitteln oder mit Zeitreihen (also variierender Leistungskennlinie) gearbeitet wird; zum anderen können bei einigen Berechnungsoptionen weitere Parameter berücksichtigt werden, um die Leistungskennlinie noch genauer anzupassen.


Im Modul LOSS&UNCERTAINTY kann das Ergebnis einer PARK-Berechnung in Bezug auf Verluste und Unsicherheiten spezifiziert werden.


DE PARK(1).png


PARK bietet fünf Haupt-Berechnungsmethoden an. Wird die Maus über eine der Schaltflächen bewegt, so wird im unteren Teil des Fensters eine Übersicht über die Methode angezeigt.

Berechnungen mit Windstatistik - Für diese Berechnungsarten bilden eine oder mehrere regionale Windstatistiken die Winddaten-Grundlage:


Berechnungen mit Zeitreihe: Für diese Berechnungsarten bilden jeweils eine oder mehrere Zeitreihen des genannten Typs die Winddatengrundlage:


Zusätzlich werden unter Andere PARK-Berechnungen fünf weitere Methoden angeboten:

DE PARK(2).png

Diese stehen zum Teil für inzwischen obsolete Berechnungsarten, die aus Kompatibilitätsgründen weiterhin vorgehalten werden, und zum Teil für Berechnungsarten, deren Bedeutung in der praktischen Anwendung gering ist.

Die Berechnungsspezifischen Register und Einstellungen werden in den entsprechenden Unterkapiteln erläutert.



Wakeverlust-Modell

Mit dem Modul PARK lassen sich auf mathematischem Wege die Wake-Verluste (Abschattungsverluste) und der sich daraus ergebende Parkwirkungsgrad eines Windparks bestimmen.

Grundlagen der Modellierung sind das Verhalten der Nachlaufströmung ('wake') einer einzelnen WEA sowie Regeln zur Handhabung von sich überlagernden Wakes und partiellen Wakes.

Das windPRO-Modul PARK unterstützt das Wakemodell nach N.O.Jensen sowie das darauf aufbauende Modell PARK2. Obwohl PARK2 vielversprechend ist, empfiehlt EMD aktuell die Verwendung des ersteren Modells, solange noch keine ausreichenden Validierungsergebnisse für PARK2 vorliegen.

In der Windstatistik-PARK-Berechnung sind unter "Erweiterte Optionen" weitere Wakemodelle verfügbar. Dieses sind aus historischen Gründen oder zum Vergleich in windPRO enthalten, werden jedoch nicht für die reguläre Projektarbeit empfohlen (NO2005, Eddy Viscosity[1], G.C.Larsen[1]).


Wakemodell N.O.Jensen (RISØ/EMD)

Das N.O. Jensen-Modell verwendet eine vereinfachte Beschreibung des Windgeschwindigkeitsprofils der 'wake' über die Wake-Decay-Konstante (Ausbreitungskonstante; 'wake decay constant'; WDC):


DE PARK(3).png


mit

v = Windgeschwindigkeit im Abstand x hinter dem Rotor
u = Windgeschwindigkeit unmittelbar vor dem Rotor
R = Rotorradius
α = Wake-Decay-Konstante (WDC)


Der Wert 2/3 steht für eine Annäherung an den Ct-Wert – In WindPRO wird für jedes Windgeschwindigkeits-Intervall der tatsächliche Ct-Wert angesetzt.

Die folgende Abbildung zeigt die Grundidee des Modells. Der Strömungsnachlauf einer WEA stellt nach den physikalischen Gesetzmäßigkeiten der Impuls- und Massenerhaltung einen Bereich mit geminderter Windgeschwindigkeit und höherer Turbulenzintensität dar. Die resultierende Strömungsänderung ist u.a. von den geometrischen Abmessungen und den Strömungseigenschaften des WEA-Rotors, der Wake-Decay-Konstante (WDC) sowie den spezifischen Windverhältnissen am Standort der WEA abhängig. Der Wert der Wake-Decay-Konstante entspricht dabei der Aufweitung des Strömungskegels pro Meter Nachlauf, z.B. führt eine Wake-Decay-Konstante von 0,075 zu einer Aufweitung von 7,5 cm/m bzw. einem Winkel Θ von ca. 4 Grad. Weitere Anmerkungen zur Bestimmung der Wake-Decay-Konstante folgen weiter unten.


DE PARK(4).png


Zusätzlich zur Berechnung von Einzelwakes wird ein Modell benötigt, um die Wakes mehrerer WEA, die auf eine WEA einwirken, zu summieren, das sog. Wake Combination Model. Hierfür wird die Wurzel der Summe der Quadrate der Windgeschwindigkeits-Reduktionen der einzelnen WEA gebildet. Um der Begrenzung des Wake-Kegels einer WEA durch die Erdoberfläche Rechnung zu tragen, fließt in das Modell ein Satz unter die Erdoberfläche gespiegelte WEA ein.


N.O.Jensen (RISØ/EMD) PARK2 2018

Das PARK2-Modell, das von DTU mit WAsP 12 eingeführt wurde und seit windPRO 3.2 SP2 (Service Pack 2) identisch in windPRO implementiert wurde, wird als sehr erfolgreich betrachtet, auch in Bezug auf sehr große Windfarmen ("Deep Arrays").

Das PARK2-Modell basiert auf dem Wakeberechnungs-Konzept von N.O.Jensen; was diesem gegenüber im Detail geändert wurde, ist dieser Poster-Präsentation[2] zu entnehmen.

Die wichtigste Änderung ist das Modell zur Kombination mehrerer Wakes, die an einer WEA auftreten (Wake combination model) von einem Ansatz, der auf der Wurzel der Summe der quadrierten Windgeschwindigkeits-Reduktionen basierte, zu einer linearen Summierung. In diesem neuen Rahmen müssen dann aber höhere Wake-Decay-Konstanten angesetzt werden. Weiteres zur Wake-Decay-Konstante weiter unten.


Die Wake-Decay-Konstante (WDC)

Die Wake-Decay-Konstante (Wake decay constant, WDC) ist ein Parameter der Familie der N.O.Jensen-Wakemodelle, der Auswirkungen auf die Ausbreitung der Wake sowie auf die Zunahme der Windgeschwindigkeit im Wake-Kegel hat (siehe Wakemodell N.O.Jensen (RISØ/EMD)).

Die WDC korreliert in hohem Maße mit der Umgebungsturbulenz am Standort. Da die WDC einen großen Einfluss auf die Ergebnisse der Wakeberechnung hat, sollte sie stets mit Standortbezug ausgewählt werden. Dies kann entweder in Form einer Turbulenzmessung oder in Form von Standardwerten für bestimmte Geländeklassen geschehen. Die vorgegebenen Standardwerte können die Standortcharakteristik in der Regel nicht ausreichend wiedergeben!

Bislang berücksichtigen die Empfehlungen von DTU zur Wake-Decay-Konstante die Variation der Umgebungsturbulenzintensität mit der Höhe noch nicht in ausreichendem Maße. Zahlreiche Forschungsprojekte sowie eigene Tests bestätigen, dass diese bedeutsam für die Wake-Decay-Konstante ist. windPRO implementiert seit windPRO 3.0 Werkzeuge, um die WDC anhand der TI zu ermitteln. Diese Werkzeuge wurden in windPRO 3.2 mit einem vollständigen formelbasierten Ansatz zur Ermittlung der TI sowie zur Konversion von TI zur WDC verfeinert. In windPRO 3.3 wurden die Empfehlungen für die formelbasierte Konversion bei Offshore-Projekten aktualisiert und die entsprechenden Einträge in den Rauigkeitsbasierten WDC-Listen geändert[3]

Im Folgenden die DTU-Empfehlungen sowie die Empfehlungen von EMD in unserem Turbulenz-basierten Ansatz:

DTU-Empfehlung EMD-Empfehlung
N.O.Jensen (PARK1) PARK2 PARK1 PARK2
Offshore 0,05 (*) 0,06 WDC = TI * 0,67 (**) WDC = TI * 0,8 (**)
Onshore 0,075 0,09 WDC = TI * 0,4 WDC = TI * 0,48

(*) frühere Empfehlung: 0,04

(**) frühere Empfehlung: wie Onshore

In den Rauigkeitsbasierten WDC-Listen in windPRO werden für normale Offshore-Turbulenz eine TI von 6% und für hohe Offshore-Turbulenz eine TI von 7,5% angenommen.

Für PARK1 haben zahlreichen Tests bestätigt, dass eine WDC von 0,04 zu guten Ergebnissen führt, z.B. von Nicolai Nygaard, Ørsted [4]. Es zeigt sich aber auch, dass bei geringeren TI eine niedrigere WDC verwendet werden muss. Die untere Grenze beobachteter TI liegt etwa bei 5%, was in PARK1 zu einer WDC 0,02 führt (EMD-Empfehlung).

Die TI hängt vom Standort ab. Liegt keine Messung vor, kann als grober Anhaltswert ein rauigkeitsbasierter Ansatz verwendet werden:

TI = A * k / ln(h/z0)

Mit:

A = 2,5
k = 0,4
h = Berechnungshöhe
z0 = Rauigkeitslänge

Die gewählten Konstanten basieren primär auf Pena Diaz 2016[5].

Hier ein Teil der Conclusion:

DE PARK(4.1).png


Die folgende Tabelle illustriert, wie die TI anhand des o.g. Ansatzes für zwei Höhen, 40 und 120 m, berechnet wird. Die entsprechende WDC ist einfach TI * 0,4. Für die Konversion von Rauigkeitsklasse zu -länge wird eine einfache lineare Beziehung in einem Graph mit logarithmischer Y-Achse zugrunde gelegt (bzw. zwei Beziehungen, eine unter und eine über Rauigkeitsklasse 1; siehe darauffolgende Tabelle).

Die Geländeklassen "Offshore" und "Offshore, hohe TI" werden in der Tabelle nicht berücksichtigt, das für diese eine andere Formelbeziehung zwischen TI und WDC verwendet wird.

Eingabe Berechnungshöhe (m)
Terraintyp Rauigkeitsklasse Rauigkeitslänge 40 120
TI WDC TI WDC
Sehr stabil -1,4 0,0000 0,052 0,021 0,049 0,020
Sehr freie Felder (Very open) 1 0,029 0,14 0,055 0,12 0,048
Freie Felder (Open) 1,5 0,056 0,15 0,061 0,13 0,052
Strukturierte Felder (Mixed farmland) 2 0,106 0,17 0,067 0,14 0,057
Stark strukturierte Felder (Closed) 2,5 0,203 0,19 0,076 0,16 0,063
Bewaldet / komplex (Very closed) 3 0,388 0,22 0,086 0,17 0,070
Sehr bewaldet / komplex (Dense forest) 3,5 0,741 0,25 0,100 0,20 0,079

Für Offshore-Windparks wurde eine zusätzliche Kategorie "Offshore (hohe TI)" hinzugefügt, die gut für Standorte wie Horns Rev-1 zutrifft, welches Testprojekt in vielen Wakemodell-Überprüfungen war. Dort ist bekannt, dass eine WDC von 0,04 gut mit PARK1 funktioniert. Horns Rev-1 hat 70 m Nabenhöhe und die Tabelle weist hierfür eine WDC nahe 0,04 für die „Offshore (hohe TI)“-Option aus.

Die Konvertierung von Rauigkeitsklasse zu Rauigkeitslänge wird entsprechend der Tabelle unten als lineare Beziehungen in einer logarithmischen Darstellung berechnet. Beachten Sie, dass es zwei lineare Beziehungen gibt, eine unter Klasse 1 und eine darüber.

Klasse Länge
0 0,0002
1 0,03
2 0,1
3 0,4


Die neuen Empfehlungen zur Wake-Decay-Konstante (PARK1):

DE PARK(4.2).png


Beachten Sie, dass diese Empfehlungen für das Originalmodell PARK von N.O. Jensen Gültigkeit haben. Für PARK2 müssen diese mit einem Faktor 1,2 multipliziert werden.

Gegenüber der vorherigen Implementation (windPRO 3.1) ergeben sich folgende Veränderungen:

DE PARK(4.3).png


Die rein formelbasierten (neuen) Werte sind etwas niedriger als die vorherigen. Dies zeigt sich insbesondere bei niedrigen Nabenhöhen und bei hohen Rauigkeiten.

In zeitreihenbasierten Berechnungen (ab windPRO 3.0) kann ein Umgebungsturbulenz-Signal in der Zeitreihe verwendet werden, um für den jeweiligen Zeitstempel die Wake-Decay-Konstante individuell zu ermitteln. Wird für das Turbulenzsignal eine alternative Zeitreihe verwendet, die kürzer ist als die, die für die Berechnung verwendet wird, so wird nur der Zeitraum verwendet, der in beiden Zeitreihen repräsentiert ist.

Der wissenschaftliche Hintergrund der neuen Wake-Decay-Empfehlungen auf Basis der Turbulenzintensität wird in Peña, Réthoré und van der Laan 2016[5] im Kapitel 2.1.2 "The wake decay coefficient" erläutert. Beachten Sie, dass dort ein Kovertierungsfaktor von (TI zu WDC) von ~0,4 ermittelt wird; es kann jedoch standortspezifische Eigenschaften geben, bei denen diese einfache Beziehung nicht funktioniert. Es wird deshalb stets empfohlen, mit gemessenen Turbulenzintensitäten zu arbeiten. Weiterhin enthalten die Formeln in obiger Quelle eine Stabilitätskorrektur, die die Konstante bei sehr stabilen oder sehr unstabilen Bedingungen anpasst. Insbesondere hier ist es wichtig, Turbulenzmessungen zu haben, um die Wahl der korrekten WDC abzusichern.


Mögliche Verdrehung der Windrichtung aufgrund von Koordinatensystem-Kovertierung

Die WAsP-Software, die für die Modellierung der Windverhältnisse über das Gelände zuständig ist, operiert ausschließlich mit rechtwinkligen Koordinatensystemen. Bei diesen entspricht Gitternord (also der Punkt, auf den eine Koordinatenlinie in Richtung Nord zeigt) nicht unbedingt geographisch Nord (also dem Punkt, auf den die Längengrade in einem geographischen System zulaufen), sondern die Nordrichtung ist je nach Lage des Standorts mehr oder weniger gegenüber geographisch Nord verdreht.

Da einige rechtwinklige Koordinatensysteme massive Verdrehungen gegenüber geographisch Nord haben, konvertiert windPRO alle Koordinaten vor der Übergabe an WAsP in das Koordinatensystem UTM WGS84 (Zone des Standortzentrums), wodurch die Verdrehung auf maximal +/- 3° reduziert wird (an den Zonenrändern). Da WAsP die Windrichtungen in Bezug auf UTM WGS84 behandelt, muss auch die anschließende Wake-Berechnung, die in windPRO durchgeführt wird, dasselbe Koordinatensystem verwenden, um die Einführung eines zusätzlichen Fehlers zu vermeiden.

Problematisch bleibt dennoch, dass Windmessungen häufig auf geographisch Nord kalibriert sind, so dass die Angaben zur Windrichtung und das verwendete Koordinatengitter nicht vollständig konform sind. Mit der genannten Lösung in windPRO wird dies zu einem marginalen Problem; ist eine vollständige Kompensation gewünscht, sollte beim Import der Winddaten ins METEO-Objekt ein Offset auf die Windrichtung angewandt werden. Da die Genauigkeit der Richtungsmessung dies selten rechtfertigt und der Effekt geringfügig ist, ist dies jedoch keine allgemeine Empfehlung. Das für die WAsP-Berechnung verwendete Koordinatensystem sowie dessen Verdrehung gegenüber Gitternord werden auf dem PARK-Hauptergebnis in den ersten Zeilen angegeben. Dies ist auch eine hilfreiche Angabe, um Änderungen in Berechnungsergebnissen nachzuvollziehen, die tatsächlich nur auf die Verschiebung des Standortzentrums in eine andere Zone (und damit der Berechnungszone) zurückzuführen sind.

Die NO2005-Implementierung des N.O.Jensen-Wakemodells

In 2005 wurde in windPRO eine Implementierung des N.O.Jensen-Wakemodells unter dem Namen N.O.Jensen (EMD) 2005 (kurz: NO2005) eingeführt. Dieses sollte das Original-N.O.Jensen-Modell nicht ersetzen, sondern in der Form ergänzen, dass bestimmte Teilergebnisse leichter zugänglich sind und so eine bessere Integration in das PARK-Modul möglich ist. Bestimmte Typen von erweiterten Optionen in PARK (z.B. Scaler-Berechnungen) waren nur mit NO2005 möglich. Seit den ersten Tests war bekannt, dass NO2005 etwas geringere Wakeverluste als das Original berechnet[6].

Neue Testreihen im Jahr 2016 mit Daten großer Windfarmen[7] offenbarten, dass mit zunehmender Größe der Windfarmen die Wake-Effekte gegenüber dem Original N.O.Jensen-Wakemodell immer stärker unterschätzt werden. Seit windPRO 3.2 empfiehlt EMD deshalb die Verwendung des NO2005-Modells nicht mehr und hat stattdessen den Anwendungsbereich des Original-N.O.Jensen-Modells erweitert, so dass es jetzt auch in Scaler-Berechnungen verwendet werden kann.

NO2005 bleibt weiterhin als alternatives Modell verfügbar, da hier in Scaler-Berechnungen eine experimentelle Anpassung der Wake-Decay-Konstante anhand der Anzahl der vorgelagerten WEA möglich ist (siehe PARK: Register Wake). Dies ist insbesondere in Post-Construction-Analysen eine wertvolle Option zum Fein-Tuning des Wakemodells.


Weiterführende Studien

  • Nygaard: Wake effects between two neighbouring wind farms [4]
  • Rathmann et al.: Validation of the revised WAsP Park Model[2]
  • Nygaard: Wakes in very large wind farms and the effect of neighbouring wind farms[8]
  • Wakemodell-Validierungstests (Englisch)



PARK-Berechnungstypen

DE PARK(1).png


Standard PARK mit WAsP

Kurzbeschreibung

Windverteilung und Wake-Verluste an jeder WEA werden anhand einer WAsP-Modellierung mit Windstatistik berechnet; Umwandlung in Jährliche Energieproduktion anhand der Leistungskennlinie mit optionaler Luftdichte-Korrektur. Verdrängungshöhen (Wald) und RIX (steiles Gelände) können optional berücksichtigt werden.


Unterregister

Zu Ergebnissen siehe PARK-Ergebnisse.


Standard PARK mit WAsP-CFD

Kurzbeschreibung

Windverteilung und Wake-Verluste an jeder WEA werden anhand einer WAsP-CFD-Modellierung mit Windstatistik berechnet; Umwandlung in Jährliche Energieproduktion anhand der Leistungskennlinie mit optionaler Luftdichte-Korrektur. Verdrängungshöhen (Wald) können optional berücksichtigt werden.


Unterregister

Zu Ergebnissen siehe PARK-Ergebnisse.


Standard PARK mit Ressourcenkarte

Kurzbeschreibung

Windverteilung und Wake-Verluste an jeder WEA werden anhand einer Windressourcenkarte (WAsP-Format) berechnet; Umwandlung in Jährliche Energieproduktion anhand der Leistungskennlinie mit optionaler Luftdichte-Korrektur.

Anmerkung: Verdrängungshöhen sollten bereits bei der Erzeugung der Windresourcenkarte mit RESOURCE berücksichtigt werden.


Unterregister

Zu Ergebnissen siehe PARK-Ergebnisse.


Zeitreihe aus MESO-Daten

Kurzbeschreibung

Windverteilung und Wake-Verluste an jeder WEA werden aus METEO-Objekt(en) mit Meso-Terraindaten berechnet (derzeit nur mit EMD-Mesodaten möglich). Deren Daten werden mit WAsP oder WAsP-CFD anhand eines Scalers zeitstempelweise auf die WEA-Positionen umgerechnet und ermöglichen eine Produktionsberechnung für jeden Zeitstempel. Die Anwendung einer Post-Kalibrierung im Scaler wird dringend empfohlen. Ergebnisse können als Jahresproduktion oder für einen spezifischen Zeitraum ausgegeben werden. Verdrängungshöhen (Wald), RIX (steiles Gelände) sowie erweiterte Zeitstempel-basierte Leistungskennlinien-Anpassungen und Wake-Modell-Anpassungen (Deep-Array-Effekt) sind weitere Optionen.

Hier geht es zum Quick Guide PARK-Berechnung mit Mesodaten.


Unterregister

Zu Ergebnissen siehe PARK-Ergebnisse.


Zeitreihe aus Messdaten

Kurzbeschreibung

Windverteilung und Wake-Verluste an jeder WEA werden aus METEO-Objekt(en) berechnet. Deren Daten werden mit WAsP, WAsP-CFD oder .flowres anhand eines Scalers zeitstempelweise auf die WEA-Positionen umgerechnet und ermöglichen eine Produktionsberechnung für jeden Zeitstempel.

Das Scaling geschieht standardmäßig anhand des A-Parameter-Verhältnisses (siehe Gelände-Scaling).

Die Höhen für die Windgeschwindigkeits- und die Windscherungs-Berechnung können separat ausgewählt werden.

Ergebnisse können als Jahresproduktion oder für einen spezifischen Zeitraum ausgegeben werden, dabei können Korrekturen für Datenverfügbarkeit oder saisonalen Bias angewandt werden. Verdrängungshöhen (Wald), RIX (steiles Gelände) sowie erweiterte Zeitstempel-basierte Leistungskennlinien-Anpassungen und Wake-Modell-Anpassungen (Deep-Array-Effekt) sind weitere Optionen.


Unterregister

Zu Ergebnissen siehe PARK-Ergebnisse.


Standard PARK mit ATLAS

Kurzbeschreibung

Zur Beschreibung der ATLAS-Methode siehe ATLAS.

Dies ist eine PARK-Berechnungsvariante aus älteren windPRO-Versionen, die aufgrund aktuellerer, besserer Methoden obsolet ist und nicht weiterentwickelt wird, aber zwecks Rückwärtskompatibilität verfügbar bleibt.


Unterregister

Zu Ergebnissen siehe PARK-Ergebnisse.


Standard PARK mit METEO-Objekt

Kurzbeschreibung

PARK-Berechnung ohne Modellierung der Windverhältnisse über das Gelände. Die Winddaten werden so verwendet, wie sie in einem METEO-Objekt angegeben sind (siehe auch METEO-Berechnung).

Dies ist eine PARK-Berechnungsvariante aus älteren windPRO-Versionen, die aufgrund aktuellerer, besserer Methoden obsolet ist und nicht weiterentwickelt wird, aber zwecks Rückwärtskompatibilität verfügbar bleibt.


Unterregister

Zu Ergebnissen siehe PARK-Ergebnisse.


Standard PARK mit WAsP, ATLAS oder METEO-Objekt

Kurzbeschreibung

Berechnungsvariante, die eine Mischung der Winddaten aus verschiedenen Modellen ermöglicht (vgl. Standard PARK mit WAsP, Standard PARK mit ATLAS und Standard PARK mit METEO-Objekt).

Dies ist eine PARK-Berechnungsvariante aus älteren windPRO-Versionen, die aufgrund aktuellerer, besserer Methoden obsolet ist und nicht weiterentwickelt wird, aber zwecks Rückwärtskompatibilität verfügbar bleibt.


Unterregister

Zu Ergebnissen siehe PARK-Ergebnisse.


Standard mit WAsP und zeitlicher Variation (2.9-Modus)

Kurzbeschreibung

Der 2.9-Modus zur zeitlichen Variation basiert auf einer Modellierung der Windverhältnisse mit WAsP aus einer Windstatistik, und der zusätzlichen Anwendung einer Schablonen-Zeitreihe (METEO-Objekt oder WTI-Zeitreihe) um die Variation der Windverhältnisse im Jahres- und Tagesverlauf zu erfassen.

Dies ist eine PARK-Berechnungsvariante aus älteren windPRO-Versionen, die aufgrund aktuellerer, besserer Methoden obsolet ist und nicht weiterentwickelt wird, aber zwecks Rückwärtskompatibilität verfügbar bleibt.

Diese Methode wurde durch das Scaler-Konzept ersetzt.


Unterregister

Zu Ergebnissen siehe PARK-Ergebnisse.


Standard PARK mit Ressourcendatei und zeitlicher Variation (2.9-Modus)

Kurzbeschreibung

Der 2.9-Modus zur zeitlichen Variation basiert auf einer Modellierung der Windverhältnisse mit WAsP aus einer Windstatistik (bei diesem Berechnungstyp findet die Modellierung bereits im Vorfeld im Rahmen einer RESOURCE-Berechnung statt), und der zusätzlichen Anwendung einer Schablonen-Zeitreihe (METEO-Objekt oder WTI-Zeitreihe) um die Variation der Windverhältnisse im Jahres- und Tagesverlauf zu erfassen.

Dabei liefert die Windressourcenkarte einen Satz sektorweise Weibull-Verteilungen für die WEA-Position. Die Zeitreihe, die als Schablone verwendet wird, um die jährliche und tägliche Variation des Windes zu repräsentieren, wird via WAsP auf die WEA-Position modelliert und liefert einen weiteren Satz Weibull-Verteilungen. Beide Weibull-Sätze werden verwendet, um sektorweise Transferfunktionen zu bestimmen, die dann auf die Zeitstempel der Schablonen-Zeitreihe angewandt werden, um eine repräsentative Zeitreihe für die WEA-Position zu erhalten.

Dies ist eine PARK-Berechnungsvariante aus älteren windPRO-Versionen, die aufgrund aktuellerer, besserer Methoden obsolet ist und nicht weiterentwickelt wird, aber zwecks Rückwärtskompatibilität verfügbar bleibt.

Diese Methode wurde durch das Scaler-Konzept ersetzt.


Unterregister

Zu Ergebnissen siehe PARK-Ergebnisse.




PARK-Berechnungseinstellungen

Register Optionen (Standard)

DE PARK(8).png


Curtailments anwenden

Sektormanagement-Curtailments wirken sich auf die Produktion einer WEA sowie auf den Wake-Effekt an benachbarten WEA aus. Beides wird berücksichtigt, wenn diese Option aktiviert ist. Für weitere Informationen siehe PARK: Register Curtailment.

Diese Option ist nicht verfügbar für Berechnungen der Gruppe Andere PARK-Berechnungen auf dem Register Hauptteil.


Erweiterte Optionen zeigen: siehe unten


Wake-Modell:

Siehe Wakeverlust-Modell.


Modellparameter

Wake-Decay-Konstante: Siehe den Abschnitt über Wakeverlust-Modelle, insbesondere das Kapitel zur Wake-Decay-Konstante. Definiert, wie stark die Wake sich hinter dem Rotor ausdehnt und wie schnell sich die Windgeschwindigkeit erholt. Es wird empfohlen, diesen Wert standortspezifisch und mit Bezug auf die Nabenhöhe (via Erweiterte Optionen) zu wählen.

Ohne die Erweiterten Optionen stehen lediglich die folgenden Standardwerte zur Verfügung:

DE PARK(9).png


Berichtsoptionen

Zusätzl. Referenzhöhe: Gibt für die angegebene Höhe und die Position des Terraindatenobjekts die mittlere Windgeschwindigkeit, Bruttowindenergie und Äquivalente Rauigkeit an.

WEA-Fläche(n) auf Karte: Ausgewählte WEA-Flächen-Objekte werden auf Karten auf Berichten angezeigt.

Umgang mit Verlusten und Unsicherheiten: Hier wird die Auswahl getroffen, wie dieses Thema auf den Berichten gehandhabt wird. Es wird empfohlen, das Modul LOSS&UNCERTAINTY zu verwenden, um diesem wichtigen Teil der AEP-Berechnung den angemessenen Fokus zu geben. Für einfachere oder vorläufige Berechnungen können die anderen Optionen verwendet werden. Mit der Option Pauschaler Abschlag wird eine zusätzliche Spalte in den Ergebnistabellen eingeführt, in denen die entsprechende Reduktion ausgewiesen wird. Der Spaltentitel kann selbst definiert werden.


Erweiterte Optionen

Wake-decay-Konstante

Das Menü enthält weitere Möglichkeiten, die WDC Landschaft und Nabenhöhe anzupassen:


DE PARK(10.2).png


Nabenhöhe
Gelände ↓ RC 25 50 75 100 150
Sehr stabil - 0,021 0,020 0,020 0,020 0,019
Offshore 0 0,034 0,032 0,031 0,030 0,030
Offshore, hohe TI 0,5 0,043 0,040 0,039 0,038 0,036
Sehr freie Felder 1,0 0,059 0,054 0,051 0,049 0,047
Freie Felder 1,5 0,065 0,059 0,056 0,053 0,051
Strukturierte Felder 2,0 0,073 0,065 0,061 0,058 0,055
Stark strukturierte Felder 2,5 0,083 0,073 0,068 0,065 0,061
Bewaldet / komplex 3,0 0,096 0,082 0,076 0,072 0,067
Sehr bewaldet / komplex 3,5 0,114 0,095 0,087 0,082 0,075


Weitere Informationen zur Wake-decay-Konstante finden Sie unter Wakeverlust-Modell.

[Expland] anklicken für Versionen vor windPRO 3.2

Die hinterlegten Werte in windPRO 3.1 sind:

DE PARK(10).png


DE PARK(10.1).png


Sektorweise Daten

Über Bearbeiten/aus METEO-Obj. können Sie die Einstellungen zur Wake-decay-Konstante sowie zur Umgebungsturbulenz (sofern diese für die aktuellen Berechnungsoptionen notwendig ist) sektorweise verfeinern:


DE PARK(11).png


Die Eingaben in diesem Fenster sind vollständig durch Formeln miteinander verknüpft (siehe Wakeverlust-Modell).

  • Erwartete Nabenhöhe (Park)[m]: Geben Sie die Höhe der Park-WEA an (wenn verschiedene Höhen verwendet werden, wählen Sie die dominante oder die mittlere Höhe).
  • Anzahl der Sektoren: Geben Sie an, in welcher räumlichen Auflösung die Angaben zur Wake-Decay-Konstante erfolgen sollen.
    • Für schnelle Berechnungen in relativ homogenem Gelände wählen Sie nur einen Sektor
  • Manuelle Eingabe / METEO-Objekt: Wenn Messdaten vom Standort in einem METEO-Objekt vorliegen, verwenden Sie in der Regel dieses; ansonsten definieren Sie die Geländeklassen in den Sektoren manuell.
  • Manuelle Eingabe über: Standard ist die Eingabe über die Geländeklasse, die für eine Rauigkeitslänge steht. Die TI und WDC werden dann für die angegebene Nabenhöhe berechnet. Soll die WDC z.B. durch Eingabe der TI oder der Rauigkeitslänge ermittelt werden, so ist dies auch möglich (Geländeklasse ist dann "Benutzerdefiniert").
  • WDC = TI x Faktor: Der Standardfaktor für das N.O.Jensen-Modell ist 0,4; für das PARK2-Modell ist es 0,48. Wird das Wakemodell geändert, nachdem in diesem Fenster bereits Eingaben erfolgt sind, sollten die berechneten Werte auf jeden Fall danach überprüft werden, ob sie noch mit dem geänderten Faktor zusammen passen.


Von METEO-Daten laden: Die sektorweise Umgebungsturbulenz kann aus einem Meteodaten-Objekt geladen werden:


DE PARK(12).png


Der Windgeschwindigkeitsbereich, aus dem die Turbulenzen gemittelt werden, wurde auf 5-15 m/s festgelegt, da dies der Bereich ist, in dem die Wakeverluste am wichtigsten sind.

[Expland] anklicken für Versionen vor windPRO 3.2

In Versionen vor windPRO 3.2 wurde ein Windgeschwindigkeitsbereich von 10-20 m/s verwendet.


Mit der kleinen Taschenrechner-Schaltfläche neben der Option zur manuellen Eingabe über die TI gelangen Sie zum Umgebungsturbulenz-Rechner:

DE PARK(11.1).png


Erweiterte Berechnungen

Diese Berechnungen stehen nur zur Verfügung, wenn ein anderes Wakemodell als N.O.Jensen (Risø/EMD) verwendet wird.


DE PARK(13).png


Reduzierte Windgeschw. in Windfarm erzeugt eine Matrix mit den berechneten WG-Reduktionen für einen bestimmten Punkt, für jede Windrichtung und jede Windgeschwindigkeit (freie Anströmung). Eine Anwendungsmöglichkeit ist es, eine sehr kleine WEA (0,1m Rotordurchmesser) an eine Messmastposition innerhalb eines Windparks zu platzieren, um die Reduktion der gemessenen Windgeschwindigkeiten durch die umliegenden WEA zu erhalten. Daraus kann dann wiederum die freie Anströmung rückgerechnet werden, was für Performance-Prüfungen nützlich sein kann.

Park-Kennlinie auf Basis des PPV-Modells bezieht die berechnete Park-Leistungskennlinie auf eine spezifische Messmastposition außerhalb der Windfarm. Dies kann z.B. für Prognosesysteme nützlich sein, in denen die Prognosewerte für eine bestimmte Position (Messmastposition) geliefert werden. Der Park-Leistungskennlinie kann dann die Windpark-Produktion entnommen werden.

Turbulenz-Berechnungen geben die Umgebungsturbulenz und die WEA-induzierte Turbulenz für jede WEA-Position aus. Hierbei handelt es sich um eine stark vereinfachte Methodik; es wird empfohlen, diese Berechnungen im Modul SITE COMPLIANCE durchzuführen, da nur dort die aktuellen IEC-Richtlinien in vollem Umfang berücksichtigt werden.


DE PARK(14).png

Weibull für +/- ½ RD berechnen: Diese zusätzliche Berichtsoption ermöglicht eine Evaluation der Variation der Windgeschwindigkeiten über die Rotorkreisfläche.


Wake-Modell

DE PARK(15).png

Siehe Kapitel Wakeverlust-Modell.

EMD empfiehlt das N.O.Jensen (Risø/EMD)-Modell. Einige Berechnungsoptionen (s.o.) sind mit diesem Modell allerdings nicht möglich, in diesen Fällen wird das Modell N.O.Jensen (EMD) 2005 empfohlen. Die drei anderen Modelle werden zur experimentellen Nutzung zur Verfügung gestellt. Bisherige Tests haben ergeben, dass diese Modelle mit den Standardeinstellungen zu niedrige Wake-Verluste annehmen. Weitere Informationen zu den Wakemodellen finden Sie in diesem Dokument.


Turbulenzmodell

DE PARK(16).png

In Bezug auf Turbulenzberechnungen sind das Modell S. Frandsen: 1999 oder das TNO-Modell derzeit am weitesten anerkannt. Wir empfehlen, Turbulenzberechnungen mit SITE COMPLIANCE durchzuführen.

Die Wake- und Turbulenzmodelle sowie andere Erweiterte Funktionen der PARK-Berechnung sind im folgenden Dokument beschrieben:

http://help.emd.dk/knowledgebase/content/ReferenceManual/Wake_Model.pdf


WAsP-Parameter bearbeiten

Siehe WAsP-Parameter.

Beachten Sie, dass seit WAsP 11 die WAsP-Parameter in der Windstatistik (sofern diese mit WAsP 11 generiert wurde) gespeichert werden. Bei WAsP-11-Berechnungen mit WAsP-11-Windstatistik finden im PARK-Modul modifizierte WAsP-Parameter keine Anwendung.



Register Optionen (Scaler)

Diese Optionen stehen größtenteils nur für die Scaler-Berechnung zur Verfügung, bei der die PARK-Produktion auf Basis einer Zeitreihe ermittelt wird.


DE PARK(22).png


Berechnen

Mittlere Jahresproduktion (AEP): Die Standardausgabe. Die Mittlere Jahresproduktion wird ermittelt, indem die mittlere stündliche Produktion der gesamten verwendeten Zeitreihe mit 8766 multipliziert wird (Anzahl Stunden pro Jahr + ¼ Tag als Schaltjahres-Ausgleich).

Jahreszeit-Korrektur: Über Bearbeiten können die Jahreszeiten definiert werden. Ist die Jahreszeit-Korrektur aktiviert, wird für jede einzelne Jahreszeit die mittlere stündliche Produktion ermittelt und diese mit der Anzahl Stunden in der Jahreszeit multipliziert. Dadurch erhält jede Jahreszeit dieselbe Gewichtung (mit Korrektur für Längenunterschiede der Jahreszeiten) und es kann z.B. ein übermäßiges Vorkommen einer Jahreszeit kompenisert werden. Diese Option kann allerdings zu Verzerrungen der Produktion führen, wenn für einzelne Jahreszeiten die Datenverfügbarkeit gering ist, da dann die verfügbaren Daten als repräsentativ für die gesamte Jahreszeit angenommen werden. Liegen für eine Jahreszeit weniger als 1% aller Daten vor, ist keine Jahreszeit-Korrektur möglich.
Langzeit-Korrekturfaktor (auf Energie): Wenn für die Periode, für die Winddaten vorliegen, eine bekannte Abweichung gegenüber dem Langzeit-Windklima herrscht, kann hier ein Korrekturfaktor angegeben werden.

Produktion für spezifische Periode: Einfache Berechnung der Produktion für die ausgewählte Periode (Auswahl auf Register Scaler). Kann beispielsweise verwendet werden, um den Verlust zu ermitteln, der durch eine Stillstandsperiode aufgrund technischer Probleme aufgetreten ist.

Korrektur für Daten-Verfügarkeit: Wenn in der spezifizierten Periode (definiert durch den ersten und den letzten Zeitstempel in der Berechnungsperiode) einige Zeitstempel fehlen, so kann dies kompensiert werden, indem das Ergebnis durch die Verfügbarkeit dividiert wird. Wird diese Option nicht aktiviert, wird angenommen, dass in Perioden ohne Daten auch keine Produktion erfolgt.
START-STOP Zeiten aus WEA-Objekten verw.: Wenn in der gewählten Periode eine oder mehrere WEA nicht durchgehend in Betrieb sind, so hat dies Auswirkungen auf die Produktion dieser WEA sowie auf den Wake-Effekt an den benachbarten WEA. Dies kann berücksichtigt werden, wenn im WEA-Objekt Daten zur In- bzw. Außerbetriebnahme angegeben sind (Siehe WEA-Objekt, Register Betrieb). Wenn sich während der Betriebszeit der WEA zu einem bestimmten Zeitpunkt die Leistungskennlinie dauerhaft ändert, so kann dies auch mit diesem Feature nachgebildet werden, indem an derselben Position zwei WEA platziert werden, von denen eine zum Zeitpunkt der LK-Änderung außer Betrieb geht und die andere in Betrieb.
Eine andere Anwendung dieses Features besteht darin, die Auswirkungen zukünftiger Windfarmen zu berechnen. Versehen Sie dazu beispielsweise eine 20j-Langzeitreihe mit einem 20-Jahre-Offset, so dass Sie die nächsten 20 Jahre abbildet. Geben Sie für zukünftige WEA deren Inbetriebnahme im WEA-Objekt an und berechnen Sie die kommenden 20 Jahre mit dieser Option, so können Sie deren Effekt auf die 20-Jahres-Produktion Ihrer Windfarm berechnen.


Tageszeitabhängige Leistungskennlinie: Die Perioden (Tag, Abend, Nacht) können über Zeiträume bearb. definiert werden. Voraussetzung ist, dass in den WEA-Objekten Leistungs-/Schall-Paare definiert sind.

Diese Option kann nicht gemeinsam mit der folgenden Option, Curtailments, gewählt werden

DE PARK(23).png

Curtailments anwenden: Sektormanagement-Curtailments wirken sich auf die Produktion einer WEA sowie auf den Wake-Effekt an benachbarten WEA aus. Beides wird berücksichtigt, wenn diese Option aktiviert ist. Für weitere Informationen siehe PARK: Register Curtailment.

Diese Option kann nicht gemeinsam mit der vorigen Option, Tageszeitabhängige Leistungskennlinie, gewählt werden


Ausgabe für PERFORMANCE CHECK und/oder Ergebnisexport

Bei Scaler-Berechnungen wird intern für jede WEA eine Produktionszeitreihe mit mehreren Parametern berechnet. Dabei fallen sehr große Datenmengen an, häufig über hundert MB pro Berechnung für eine kleine Windfarm mit 10 WEA. Um zu verhindern, dass die Projektdatei zu groß wird, können Einschränkungen definiert werden, was davon gespeichert wird:

  • Für welche WEA werden Ergebniszeitreihen gespeichert
  • Werden nur Summen für alle WEA gespeichert
  • In welcher zeitlichen Aggregierung werden Ergebniszeitreihen gespeichert

Standardmäßig werden monatlich aggregierte Zeitreihen gespeichert. Soll eine Analyse des Projekts in PERFORMANCE CHECK erfolgen, sollte dies auf "Keine Aggregierung" oder 1-h-Werte gesetzt werden.

Summenspalte nur für neue WEA: Ist diese Option ausgewählt, so enthält die Summenspalte in der Produktionszeitreihe nur die Summe für die neuen WEA, ansonsten ist dort die Summe aller WEA zu finden.

Reduzierte Windgeschw. in Windfarm: Erzeugt eine Matrix mit den berechneten WG-Reduktionen für jede WEA, jede Windrichtung und jede Windgeschwindigkeit (freie Anströmung) als exportierbares Ergebnis (siehe Ergebnis in Datei). Eine Anwendungsmöglichkeit ist es, eine sehr kleine WEA (0,1m Rotordurchmesser) an eine Messmastposition innerhalb eines Windparks zu platzieren, um die Reduktion der gemessenen Windgeschwindigkeiten durch die umliegenden WEA zu erhalten. Daraus kann dann wiederum die freie Anströmung rückgerechnet werden, was für Performance-Prüfungen nützlich sein kann.

Aggregierung der Zeitreihe: Standard ist, dass die Ergebnisausgabe (via Ergebnis in Datei) monatlich aggregiert (für Produktionen) bzw. gemittelt (für Windgeschwindigkeiten und Berechnungsparameter) erfolgt, da ansonsten sehr große Datenmengen dauerhaft im Projekt vorgehalten werden müssten (siehe Spalte Größe im Berechnungen-Fenster). Für eine LOSS&UNCERTAINTY (DE)-oder eine PERFORMANCE CHECK-Berechnung sollte allerdings "Keine" Aggregierung gewählt werden, da hierfür mindestens Stundendaten erforderlich sind.


Berichtseinstellungen:

Siehe Register Optionen

WEA auf Berichten Zeitliche Variation: Neben der Unterscheidung in Neue und Existierende WEA kann bei den existierenden WEA auch zwischen "Park-WEA" und "Nicht-Park-WEA" unterschieden werden (siehe Seite Existierende WEA).



Register WEA und WEA<>Winddaten

DE PARK(6).png

Auf dem zweiten Register WEA lassen sich im oberen Bereich die Layer auswählen, von denen WEA in der Berechnung berücksichtigt werden sollen. Standardmäßig sind die Layer ausgewählt, die auf der Karte eingeschaltet (sichtbar) sind.

Anmerkung: Existierende WEA erscheinen standardmäßig nur auf dem Bericht Referenz-WEA. Ihr abschattender Effekt auf neu geplante WEA wird dennoch berücksichtigt. Wenn Sie wünschen, dass die existierenden WEA und deren durch die neue Parksituation reduzierter Ertrag auch auf dem Hauptergebnis erscheinen, so müssen Sie in den Objekt-Eigenschaften der Existierende-WEA-Objekte das Häkchen auf dem Register WEAWird als WEA im Windpark behandelt (Erscheint auf PARK-Hauptergebnis) setzen!

Bei einigen PARK-Berechnungsvarianten erscheint im unteren Bereich des Registers eine Option Jeder WEA einzeln ein Meteo- oder Terraindatenobjekt zuweisen. Diese aktiviert ein neues Register
WEA<>Winddaten. Ansonsten erfolgt die Zuordnung von WEA und Winddatenobjekten über die räumliche Entfernung, d.h. es wird für jede WEA das jeweils nächstgelegene Winddatenobjekt verwendet. Bevor Sie dieses Häkchen setzen, sollten Sie auf dem Register Wind Ihre Wahl treffen.

DE PARK(7).png



Register Curtailment

[Expland] anklicken für Versionen vor windPRO 3.3

Zum Handling von Curtailments in windPRO 3.2 siehe das archivierte windPRO 3.2-Energie-Handbuch, Kapitel 3 Seite 137. Vor windPRO 3.2 wurden Curtailments nicht innerhalb des PARK-Moduls behandelt.


Siehe hierzu auch Quick Guide PARK-Berechnung mit Curtailments.


Ein Curtailment ist eine planmäßige Abschaltung der WEA, wenn bestimmte Bedingungen gegeben sind, z.B.

  • Schallreduktion
  • Fledermausabschaltung
  • Turbulenzabschaltung (Sektormanagement)

Das Register Curtailment erscheint in den Berechnungseinstellungen einer Windstatistik- oder Scaler-basierten PARK-Berechnung, wenn folgende Option ausgewählt ist:

PARK-Berechnung → Register OptionenCurtailments anwenden

In Windstatistik- und Scaler-basierten PARK-Berechnungen können nur Curtailments berücksichtigt werden, die auf Windgeschwindigkeit und/oder Windrichtung basieren (in der Regel nur Turbulenzabschaltungen/Sektormanagement). In Scaler-basierten PARK-Berechnungen können auch Curtailments berücksichtigt werden, die auf anderen Parametern basieren, für die ein Zeitreihen-Signal vorhanden ist.

Curtailments wirken sich auf die Produktion einer WEA sowie auf den Wake-Effekt an benachbarten WEA aus.

Die Curtailments selbst werden in der Regel in den WEA-Objekten auf dem dortigen Register Curtailments definiert; in einer PARK-Berechnung erscheinen diese dann auf dem PARK-Register Curtailments:

DE PARK(44).png

Bei welchen WEA welche Curtailments benötigt werden, kann je nach Curtailment auf unterschiedliche Weise ermittelt werden, z.B.

  • DECIBEL-Berechnungen, um Schallabschaltungen zu planen
  • SITE COMPLIANCE-Berechnungen, um Sektormanagement-Curtailments zu planen
  • Avifaunistische oder Fledermaus-Gutachten, die Informationen zu benötigten Vogelschutz- oder Fledermausabschaltungen geben.

Wird das Häkchen Bearbeitung zulassen gesetzt, können die Curtailments direkt auf dem PARK-Register definiert werden. Dort eingegebene Curtailment-Daten werden ins WEA-Objekt übertragen und haben somit auch für weitere Berechnungen Wirksamkeit.

Wenn ein bestimmtes Curtailment zusätzliche meteorologische Signale benötigt werden, so kann in der unteren Fensterhälfte angegeben werden, woher diese bezogen werden sollen (nur für Scaler-Berechnungen). Im Beispiel oben benötigt das Fledermaus-Curtailment ein Temperatursignal. Es wurde angegeben, dass dieses von einem METEO-Objekt bezogen werden soll. Bei der Auswahl der Quelle ist darauf zu achten, dass die METEO-Zeitreihe die gesamte Periode der Scaler-Zeitreihe abdeckt.


Ergebnisse von PARK-Berechnungen mit Curtailment

Die Curtailment-Verluste werden auf dem PARK-Hauptergebnis in einer eigenen Spalte neben den Wake-Verlusten angegeben. Im via Ergebnis-in-Datei exportierten Park result werden Curtailment-Verluste in Spalte Z angegeben. In Zeitreihen-Exports aus Scaler-Berechnungen (Park time variation) wird bei Verwendung der maximalen zeitlichen Auflösung für jedes Intervall die verwendete Leistungskennlinie angegeben.

Wird die PARK-Berechnung einer LOSS&UNCERTAINTY-Berechnung zugrunde gelegt, werden die Curtailment-Verluste und die Wake-Verluste dorthin übernommen. Bei der Berechnung der Gesamtverluste muss L&U dann zwischen den in PARK und den in L&U berechneten Verlusten unterscheiden:

  • In L&U ermittelte Verluste werden als unabhängig behandelt, d.h. zwei Verluste werden via (1-Loss1) * (1-Loss2) kombiniert
  • Bei einer Berechnung von Curtailments in PARK ist dies nicht notwendig, da man dort sehr genau zwischen Verlusten durch Wakes und Verlusten durch Curtailments unterscheiden kann. Diese Verluste werden deshalb einfach addiert, bevor die in L&U ermittelten Verluste auf die oben beschriebene Weise abgezogen werden.




Register Wind

Register Wind zur Auswahl der zugrunde zu legenden Winddaten für den Standort:


DE PARK(17).png


Der Screenshot zeigt die Auswahl von WAsP-Terraindatenobjekten im Rahmen einer PARK-Berechnung des Typs Standard PARK mit WAsP.

Je nach PARK-Berechnungstyp kann dasselbe Register auch zur Auswahl von METEO-Objekten, ATLAS-Terraindatenobjekten oder einer Kombination der genannten Objekttypen dienen.

Es muss mindestens eines der angebotenen Objekte gewählt werden. Werden mehrere gewählt, wird standardmäßig für jede WEA das nächstgelegene Objekt verwendet. Auf dem Register WEA kann auch ausgewählt werden, dass eine manuelle Zuordnung von WEA zu Winddaten vorgenommen wird – dies kann z.B. sinnvoll sein, wenn ein Winddatenobjekt die Windverhältnisse auf einem lokalen Hügel und das andere im umgebenden Flachland repräsentiert – so kann jeder WEA das Winddatenobjekt zugeordnet werden, das für sie am repräsentativsten ist.

Bitte beachten Sie, dass nur diejenigen Terraindaten- und METEO-Objekte in diesem Fenster erscheinen, deren Verwendungszweck dem ausgewählten Berechnungstyp entspricht.



Register CFD-Ergebnisdateien und WEA<>Windstatistik

Zur Erzeugung von CFD-Ergebnisdateien siehe WAsP-CFD-Überblick. Auf diesem Register werden bei einer PARK-Berechnung des Typs Standard PARK mit WAsP-CFD die zu verwendenden CFD-Ergebnisdateien (Kacheln) ausgewählt. Die CFD-Kacheln müssen den gesamten Bereich der Windfarm abdecken, jede WEA muss auf mindestens einer CFD-Kachel liegen.


DE PARK(19).png


CFD-Kacheln werden im Rahmen eines Projekts als sogenannte *.CFDRES-Dateien abgespeichert. Sie können entweder mit Aus Berechnung aus einer WAsP-CFD-Berechnung geladen werden, die im selben Projekt durchgeführt wurde, oder sie können direkt aus dem Windows-Dateisystem gewählt werden (WAsP-CFD-Datei(en) hinzuf.).

CFD-Kacheln enthalten keine direkt nutzbaren Windverhältnisse, sondern lediglich relative Veränderungen der Windverhältnisse gegenüber einer Windstatistik. Im nächsten Schritt muss deshalb mindestens eine Windstatistik ausgewählt werden, anhand derer die CFD-Ergebnisse auf die WEA-Positionen umgerechnet werden. Dies geschieht auf dem Register WEA<>Windstatistik:


DE PARK(20).png


Bitte beachten Sie, dass Windstatistiken, die in WAsP-CFD-Berechnungen verwendet werden, ebenfalls mit WAsP-CFD erzeugt sein müssen. Für weitere Informationen zur Erzeugung einer WAsP-CFD-Windstatistik siehe STATGEN-Überblick.

Wird der PARK-Berechnung mehr als eine Windstatistik zugewiesen, kann entweder eine Zuordnung zu den einzelnen WEA aufgrund der Entfernung (Nächstgelegene) vorgenommen werden. Alternativ können die WEA manuell bestimmten Windstatistiken zugeordnet werden – dies kann z.B. sinnvoll sein, wenn ein Winddatenobjekt die Windverhältnisse auf einem lokalen Hügel und das andere im umgebenden Flachland repräsentiert, um jeder WEA die Winddaten zuzuordnen, die für sie am repräsentativsten sind.



Register Ressource-Dateien

Auf diesem Register werden Windressourcen-Dateien für den PARK-Berechnungstyp Standard PARK mit Ressourcenkarte geladen. Eine Windressourcen-Datei enthält vorberechnete Windbedingungen für einen Bereich, der bei der Erzeugung der Datei , z.B. im Modul RESOURCE, definiert wurde.

Beim Einsatz einer Windressourcen-Datei in der PARK-Berechnung ist darauf zu achten, dass alle WEA in der PARK-Berechnung innerhalb der von der Windressourcen-Datei abgedeckten Fläche liegen müssen. Wenn Zweifel bestehen, sollte die Windressourcen-Datei im Vorfeld im Ergebnislayer-Fenster eingeladen und die Lage auf der Karte überprüft werden.

Liegen WEA nicht innerhalb der Windressourcen-Fläche, so muss entweder eine neue Windressourcen-Datei erstellt werden, die den zusätzlichen Bereich abdeckt, oder die WEA müssen aus der Berechnung ausgenommen werden (z.B. entfernte Referenz-WEA).

Weiterhin muss die Windressourcen-Datei den Nabenhöhen-Bereich abdecken, der in der Berechnung vorkommt. Dies schließt die WEA-Nabenhöhen ein sowie die Referenzhöhe, die auf dem Register Optionen gewählt ist (Standardwert: 50 m).

Um die Windbedingungen für eine WEA-Nabenhöhe zu ermitteln, wird bei Bedarf zwischen den Höhen der Windressourcen-Datei interpoliert, nicht jedoch extrapoliert. Enthält also eine Windressourcendatei die Höhen 100 und 120 m, so kann damit eine WEA mit Höhe 121 m bereits nicht mehr berechnet werden! Um die Interpolationsentfernung möglichst gering zu halten, wird empfohlen, die Windressourcendatei für die Nabenhöhen der WEA oder Höhen +/- 10 m vorzubereiten.


DE PARK(21).png



Register Verdrängungshöhe

DE PARK(18).png


  • Keine Verdrängungshöhen: Die reguläre Nabenhöhe einer WEA wird verwendet, auch wenn im WEA-Objekt eine Verdrängungshöhe angegeben ist
  • Verdrängungshöhen von Objekten: Die Nabenhöhen der WEA werden, wenn im WEA-Objekt eine Verdrängungshöhe angegeben ist, um den entsprechenden Betrag reduziert
  • Verdrängungshöhen-Rechner: Sektorweise Ermittlung von Verdrängungshöhen entsprechend dem ausgewählten Verdrängungshöhen-Profil. Objektspezifische Verdrängungshöhen werden ignoriert.


Weitere Informationen



Register Leistungskennlinie

Auf diesem Register werden Eingaben getätigt, die windPRO mitteilen, ob und wie die im WEA-Katalog vorliegende Leistungskennlinie auf die Luftdichte am Standort umgerechnet werden soll sowie wie besagte Luftdichte ermittelt wird.

Das Register existiert in einer einfachen Variante (Module ATLAS, WAsP interface, PARK unter Verwendung einer regionalen Windstatistik) und in einer komplexeren Variante (PARK unter Verwendung eines Scalers).


Einfache Variante

Leistungskennlinien werden von WEA-Herstellern normalerweise für eine Standardluftdichte von 1,225 kg/m³ angegeben. windPRO rechnet diese automatisch in die mittlere Luftdichte am Standort um, wenn das Häkchen Leistungskennlinie anpassen gesetzt ist. Ansonsten wird die Leistungskennlinie so verwendet, wie sie im WEA-Objekt angegeben ist.

Energie (69).png

  • Die Alte windPRO-Methode sollte nur aus Kompatibilitätsgründen verwendet werden
  • Die Neue windPRO-Methode basiert auf der IEC 61400-12, erweitert diese jedoch mit der Möglichkeit, auch Anpassungen jenseits 5% Abweichung von Standardluftdichte gut zu berechnen.
  • Die Methode der IEC 61400-12 hat besagtes Defizit, kann bei kleineren Anpassungen jedoch verwendet werden

Die Leistungskennlinen-Optionen werden in einem gesonderten Dokument genauer beleuchtet (siehe auch Hyperlink am unteren Rand des Registers).

Die Einstellungen unter Umgang mit negativen Leistungswerten sind nur relevant, wenn die Leistungskennlinie der verwendeten WEA in den niedrigen Windgeschwindigkeiten (normalerweise 1-3 m/s) negative Werte enthält. Häufig sind diese Werte in den Hersteller-Leistungskennlinien jedoch auf 0 gesetzt.


Über die Schaltfläche Bearbeiten gelangen Sie zu den Optionen der Luftdichte-Berechnung:


Energie (69.1).png


Die Luftdichte wird für die Nabenhöhe der individuellen WEA berechnet. Entscheidende Werte dafür sind die Temperatur und der Luftdruck. Die relative Luftfeuchtigkeit hat nur marginalen Einfluss. Die Temperatur wird standardmäßig der hinterlegten Klimadatenbank (nächstgelegene Station) entnommen und anhand des vertikalen Temperaturgradienten von der Höhe der Klimastation auf Nabenhöhe umgerechnet. Der Luftdruck wird aus der Höhe über NN. berechnet.

Im unteren Bereich des Fensters können eigene Probeberechnungen anhand der angegebenen Parameter durchgeführt werden, z.B. um die Sensitivität bei Änderung eines Parameters zu ermitteln.

Die Hintergründe der Luftdichte-Berechnung werden in einem eigenständigen Dokument erläutert: http://www.emd.dk/files/windpro/WindPRO_AirDensity.pdf (siehe auch Hyperlink am unteren Rand des "Luftdichte Bearbeiten"-Fensters)



Scaler-Variante

Leistungskennlinien gehen üblicherweise als über das Jahr gemittelte Leistungskennlinien in Berechnungen der Jahresenergieproduktion (AEP, Annual Energy Production) ein. Mit der Zeitreihen-basierten Scalermethode können für jeden Zeitschritt Korrekturen für die Leistungskennlinien vorgenommen werden, die auf den meteorologischen Parametern der jeweilgen Periode basieren. Häufig ändert dies nicht viel an der berechneten mittleren Jahresenergieproduktion, es kann aber z.B. wenn am Standort besonders hohe oder niedrige Turbulenzen herrschen, die Genauigkeit der AEP verbessern. Auch wenn Analysen mit PERFORMANCE CHECK durchgeführt werden sollen, erlaubt es häufig, die Produktion einer spezifischen Periode besser zu reproduzieren und Zeiträume mit ungewöhnlich hoher oder niedriger Performance zu erklären.


DE PARK(31).png


Die möglichen Korrekturen sind:

  • Luftdichte-Korrektur

Wird im Bereich Leistungskennlinie die Korrektur nach 61400-12-1 ed.2 ausgewählt oder verwenden die WEA-Objekte das PowerMatrix-Format, so können weitere Korrekturen durchgefürt werden:

  • Turbulenz-Korrektur (nur für WEA mit Pitch-Leistungsregelung)
  • Windscherungs-Korrektur (basierend auf gewählten Shear-Höhen auf dem Scaler-Register)
  • Richtungsänderungs-Korrektur (basierend auf Richtungsänderungs-Signal [Veer] in METEO-Objekt oder Meso-Shear)

Die Luftdichtekorrektur folgt den Formeln der IEC-Norm 61400-12-1 Ed. 2[9]. Es sollte an dieser Stelle angemerkt werden, dass die IEC-Norm Methoden beschreibt, um eine gemessene Leistungskennlinie auf Basis der meteorologischen Parameter in Standardbedingungen umzurechnen. In windPRO werden diese Methoden umgedreht, um Leistungskennlinien von Standardbedingungen auf durch die Meteorologie modifizierte Bedingungen umzurechnen. Um dieses Konzept umsetzen zu können, mussten bei der Implementierung einige Anpassungen vorgenommen werden.

Temperatur / Luftdruck: Diese Signale können von dem oder den METEO-Objekten, auf denen das Scaling basiert (siehe Register Scaler bezogen werden (von Scaler-Zeitreihe(n)). Wenn auf dem Scaler-Register mehrere METEO-Objekte gewählt sind, ist es notwendig, dass sie alle das entsprechende Signal für jeden Zeitstempel haben. Wenn die Zeitstempel der METEO-Objekte nicht komplett synchron sind, wird eine Abweichung der Zeitstempel um bis zu 50% des Zeitschritts toleriert.

Alternativ kann ein individuelles METEO-Objekt mit Luftdichte- oder Temperaturzeitreihe ausgewählt werden. In diesem Fall sind die Anforderungen an die Verfügbarkeit der Daten geringer – bis zu 13 Zeitstempel der Scaling-Zeitreihe dürfen in der LK-Korrektur-Zeitreihe am Stück fehlen oder deaktiviert sein (entspricht bei 10min-Zeitreihen 2 Stunden). Die fehlenden Werte werden dann zwischen den nächstgelegenen Zeitstempeln linear interpoliert. So können bei einem Scaling anhand einer 10min-Zeitreihe dennoch Stundenzeitreihen für die Luftdichteanpassung verwendet werden.

Turbulenz: Für die Turbulenzanpassung gelten ähnliche Regeln bezüglich der Herkunft des Signals und der Anforderungen an die Verfügbarkeit. Ab windPRO 3.1 können Scaler, die das Scaling mit den Ergebnissen von WAsP-CFD (*.cfdres) oder anderen CFD-Modellen (*.flowres; sofern diese Turbulenzdaten anbieten) durchführen, auch ein gescaltes Turbulenzsignal generieren (siehe Scaler:Turbulenz).

Das Scaling der Turbulenzintensität auf die WEA-Position geschieht unter Annahme einer über die Höhe konstanten Standardabweichung. Aus der Scaling-Zeitreihe wird die Standardabweichung aus Windgeschwindigkeit und Turbulenzintensität ermittelt (alternativ aus Windgeschwindigkeit aus Zeitreihe und Turbulenzinformation aus *.cfdres oder *.flowres-Datei). Die Standardabweichung wird dann auf die für die WEA-Position gescalte Windgeschwindigkeit angewandt, um die Turbulenzintensität für diese Position zu erhalten. Dies ist eine relativ einfache Herangehensweise, die nicht berücksichtigt, dass es Teile des Standorts mit starken Turbulenzabweichungen geben kann.

Wenn die Turbulenzinformation für einen Zeitstempel fehlt, wird keine Turbulenzkorrektur auf die Leistungskennlinie angewandt, aber der Datenpunkt wird dennoch berechnet. Bevor die Berechnung gestartet wird, wird überprüft, ob mindestens 50% der Zeitstempel über eine Turbulenzinformation verfügen. Ansonsten wird ein Fehler ausgegeben, da es unter solchen Bedingungen nicht sinnvoll ist, eine Turbulenzkorrektur durchzuführen.

Ein Turbulenzsignal kann auch in einem METEO-Objekt mit Mesoskalen-Daten (EMD-ConWx und EMD-WRF) erzeugt werden – siehe hierzu Turbulenzsignale in EMD-Meso-Daten. Korrektureinstellungen: Die Turbulenzkorrektur benötigt eine Annahme darüber, welches die Turbulenz ist, für die die Standardleistungskennlinie gilt (Referenz-Turbulenzintensität). Dieser Wert kann vom Anwender definiert werden:


DE PARK(32).png


Windscherungs-Korrektur: Sind auf dem Scaler-Register mehrere Shear-Höhen gewählt, werden diese verwendet, um die Windscherungs-Korrektur zu berechnen.

Richtungsänderungs-Korrektur (Veer): Dies benötigt ein eigenes Richtungsänderungs-Signal (Veer) in einem METEO-Objekt. Grund hierfür ist, dass die Arbeit mit zwei Windfahnen normalerweise kein zuverlässiges Richtungsänderungs-Signal für alle Zeitstempel liefert. Die Daten der Windfahnen müssen deshalb zunächst importiert und überprüft werden. Gegebenenfalls können Teile der Zeitreihe mit Richtungsänderungen aus einem METEO-Objekt mit Mesodaten (EmdConWx oder EmdWrf) substituiert werden oder dieses alleine verwendet werden.

In der PERFORMANCE-CHECK-Dokumentation werden berechnete Luftdichte- und Turbulenzkorrekturen mit Messungen verglichen. Zu Details über die Korrekturmethoden siehe die IEC-Norm 61400-12-1 Ed. 2. Die angewandten Korrekturfaktoren ebenso wie die verwendeten Signale werden für jeden Zeitstempel in den exportierbaren Ergebniszeitreihen der PARK-Berechnung ausgegeben.



Register Wake

Dieses Register ist nur bei Scaler-basierten Berechnungen verfügbar. Bei allen anderen PARK-Berechnungsoptionen sind die Wakemodell-Einstellungen auf dem Register Optionen. Zu den Einstellungen Wake decay-Konstante: Einheitlich / Sektorweise siehe dort, insb. auch der Abschnitt Erweiterte Optionen.

Auf dieser Seite werden nur die Erweiterten Parkoptionen und die Deep-Array-Features erläutert.


DE PARK(24).png


Wake-Modell

Es kann zwischen den Optionen

  • Kein Wake-Modell, d.h. dass alle WEA als frei stehend betrachtet werden und alle weiteren Eingaben auf diesem Register obsoloet sind
  • N.O. Jensen (RISØ/EMD)
  • N.O. Jensen (EMD) : 2005
    • Ohne Spiegel-Wakes: Diese Option sollte nur gesetzt werden, wenn eine ältere windPRO-Berechnung exakt reproduziert werden muss. Für höchstmögliche Genauigkeit sollten Spiegel-Wakes aktiviert bleiben (siehe [10], Kapitel 2).
  • N.O. Jensen (RISØ/EMD) PARK2 2018

Standardeinstellung und Empfehlung ist N.O. Jensen (RISØ/EMD). Für weitere Informationen siehe Wakeverlust-Modelle.


Erweiterte Parkoptionen

Wake decay-Konstante → Erweitert → Zeitschrittweise anhand Turbulenz ermöglicht es, die Wake-decay-Konstante mit den Turbulenzbedingungen am Standort variieren zu lassen, anstatt lediglich einen Jahresmittelwert anzugeben.

Die Methode benötigt

  • Entweder einen Scaler, der Turbulenz-Scaling beinhaltet (siehe Scaler:Turbulenz)
  • oder eine Turbulenzzeitreihe in einem METEO-Objekt, die den gesamten Zeitraum der Zeitreihen-Berechnung abdeckt. In diesen Fall wird die Turbulenz, um sie aus der gewählten Zeitreihe an die WEA-Positionen zu modellieren, zunächst in eine Zeitreihe der Standardabweichungen der Windgeschwindigkeit umgerechnet; die Standardabweichung wird als konstant für den Standort und die Höhen angenommen. Aus der Standardabweichung und der vom Scaler modellierten mittleren Windgeschwindigkeit für die WEA-Standorte wird die Turbulenz für die WEA-Positionen berechnet.

In beiden Fällen wird die WEA-spezifische Turbulenz zu einem Zeitpunkt in eine Wake-decay-Konstante umgerechnet, die der Wake-Berechnung der entsprechenden WEA zugrunde gelegt wird.

Die Umrechnung von Turbulenz in Wake-decay-Konstante ist eine einfache lineare Gleichung, deren Parameter modifizeirt werden können. Die Standardparameter sind

Skalierung (c): 0,4

Offset (d) = 0,0

Diese werden Onshore als sicher und robust betrachtet, wobei aber vorausgesetzt wird, dass die Turbulenzdaten angemessen zutreffend sind. Bezüglich Offshore-Situationen zeigen mehrere Testfälle, dass der Faktor 0,4 hier zu niedrig ist. Das im Fenster verlinkte Dokument gibt hier Empfehlungen ab.


[Expland] anklicken für Versionen vor windPRO 3.2

Skalierung (A): 0,47; Offset (B): 0,004


DE PARK(25).png

Windrichtung in Wake-Berechnung von: Wenn für einen Zeitschritt der Zeitreihe die Wake-Verluste modelliert werden, so muss dem Modell eine einzige Windrichtung zugrunde liegen. Wenn aufgrund der modellierten Windbedingungen die Windrichtung von WEA zu WEA differiert, so muss eine Entscheidung für eine Referenzrichtung getroffen werden. Standardmäßig wird die erste WEA in der Berechnung (siehe Register WEA) verwendet.

Die Entscheidung ist bedeutsam, wenn z.B. eine Berechnung mit nur Existierenden WEA und eine mit Neuen+Existierenden WEA durchgeführt wird. Dann kann nämlich - abgesehen vom Wake-Effekt der Neuen WEA – das Ergebnis für die Existierenden WEA zwischen den beiden Berechnungen leicht abweichen, da in der ersten Berechnung eine andere WEA für die Richtung in der Wake-Modellierung zuständig ist als in der zweiten (Neue WEA stehen stets am Anfang der Liste). In so einem Fall sollte für beide Berechnungen dieselbe WEA als Referenz-WEA für die Windrichtung der Wake-Modellierung gewählt werden.

In komplexem Gelände mit großen Richtungsänderungen innerhalb der Windfarm kann es außerdem sinnvoll sein, gezielt eine WEA in der Mitte des Standorts als Referenz-WEA zu wählen, anstatt einfach nur die erste WEA zu nehmen, die vielleicht eher am Rand der Windfarm steht und nicht besonders repräsentativ für die Windrichtung ist.

Die Auswahl beeinflusst außerdem die berechnete sektorweise aggregierte freie Windgeschwindigkeit, da durch die Referenz-WEA festgelegt wird, welchem Sektor ein Zeitstempel zugeordnet wird.


Deep-Array-Features für große Windfarmen

Die hier aufgeführten Features können im Rahmen von POST-construction Analysen (z.B. mit PERFORMANCE CHECK) verwendet werden, um eine Feinabstimmung des Wakemodells an die gemessenen Daten vorzunehmen. Die gewonnenen Erkenntnisse können für Prognoserechnungen verwendet werden, wenn eine ähnliche Windfarm in vergleichbarer Umgebung und mit vergleichbaren klimatischen Gegebenheiten geplant wird.


Wake-Überlagerungsmodell

Teil eines Wakemodells ist das sog. Wake-Überlagerungsmodell (wake combination model), das festlegt, wie der Effekt von sich überlagernden Wakes berechnet wird. Die zusätzlichen Einstellungen zum Wake-Überlagerungsmodell unterscheiden sich je nachdem, welches Wakemodell ausgewählt ist.

Im Wakemodell N.O. Jensen (RISØ/EMD) (NO-Original) werden die Windgeschwindigkeits-Reduktionen mehrerer WEA standardmäßig zu 100% über die Wurzel der Summe der Quadrate (RSS-Methode, Root-Sum-Square) summiert:

DE PARK(26.1).png

Eine lineare Gewichtung der Einzelwakes führt insgesamt zu höheren Wakeverlusten. Wird in einem der beiden Felder ein Faktor eingegeben, so wird das andere Feld automatisch ausgefüllt (Summe = 1,0).

Generell performt die Standardeinstellung gut, auch bei großen Windfarmen. Die Einstellungsmöglichkeit wird dennoch angeboten, um bei Post-Construction-Analysen anhand von konkreten Standortbezogenen Daten das Wakemodell noch genauer kalibrieren zu können.


Das Wakemodell N.O. Jensen (EMD) 2005 handhabt die Reduktionen standardmäßig so wie NO-Original; Tests zeigen allerdings, dass die Wake-Verluste in großen Windfarmen (ab etwa 5 Reihen orthogonal zur Windrichtung) bei diesem Modell unterschätzt werden. Deshalb kann hier eine Kombination beider Methoden zu einer besseren Abbildung der Reduktion führen[11]. Durch die Einstellungen unter Wake-Überlagerungsmodell können beide Methoden mit unterschiedlicher Gewichtung kombiniert werden.

DE PARK(26).png

In empirischen Untersuchungen stellte sich eine Gewichtung von 35% Linear / 65% RSS-Gewichtung als taugliche Parameterkombination heraus (siehe Wakemodell-Validierungstests (Englisch)). Dies ist die aktuelle Standardeinstellung, wenn die Deep-Array-Features aktiviert sind.


Im Wakemodell N.O. Jensen (RISØ/EMD) PARK2 2018 werden die Reduktionen direkt summiert (Lineare Methode). Dies ist ein integraler Bestandteil des Wakemodells, der nicht verändert werden kann.


Änderung der Wake-decay-Konstante (nur bei N.O.Jensen (EMD) 2005)

Eine Kombination von linearer und RSS-Gewichtung führt beim Wakemodell N.O.Jensen (EMD) 2005 dazu, dazu, dass Reduktionen in der Mitte der Windfarm oft zu hoch ausfallen. Eine zusätzliche Korrektur wurde in Gaumont 2012[12] vorgeschlagen, nämlich die Wake-decay-Konstante (WDC) anhand der Anzahl der vorgelagerten WEA zu reduzieren.

Wie die WDC anhand der vorgelagerten WEA berechnet wird, wurde im Laufe der verschiedenen windPRO-Versionen weiterentwickelt. Die Versionen 1 und 2 sind derzeit nur noch aus Kompatibilitätsgründen verfügbar, bei aktuellen Projekten sollte stets Version 3 verwendet werden.

Version 1: Halb-aggregierte Reduktion nach Anzahl Luv-WEA Version 2: Voll-aggregierte Reduktion nach Anzahl Luv-WEA ab WEA 2 Version 3: Voll-aggregierte Reduktion nach Anzahl Luv-WEA ab WEA 1

DE PARK(27).png


Es wird geraten, diese Modifikationen vor allem in Post-Construction-Projekten einzusetzen, wo ein Abgleich mit den tatsächlichen Erträgen möglich ist. Die Erfahrung zeigt, dass die Wake-Effekte in den einzelnen Reihen so häufig genauer modelliert werden können, wogegen die mittleren Wake-Verluste für den Gesamtpark sich häufig nur marginal ändern (siehe Wakemodell-Validierungstests (Englisch)).

Es wird empfohlen, ab Reihe 5 nicht weiter zu reduzieren.

Die Wirkungsweise der Modifikation (Version 3) inklusive empfohlener Modellparameter ist unten dargestellt. Parametersatz 1 wird für den Anfang empfohlen. Wenn die Modellierungsergebnisse die tatsächlichen Verhältnisse (wie in PERFORMANCE CHECK analysiert) nicht korrekt wiedergeben, können die Parametersätze 2 (weniger starke Reduktion) oder 3 (stärkere Reduktion) probiert werden.


Mehrere Reihen: Reduktion der WDC anhand der Anzahl Luv-WEA

Par.Satz1 Par.Satz2 Par.Satz3
A -0,3 -0,2 -0,5
B 1,4 1,3 1,5

Für mehrreihige Windfarmen wird es normalerweise notwendig sein, die WDC anhand der Anzahl Luv-WEA zu reduzieren. Diese Reduktion kann stärker oder schwächer entsprechend dem verwendeten Parametersatz ausfallen. Die folgende Grafik zeigt, wie sich eine Ausgangs-WDC von 0,05 modifiziert würde. Die x-Achse zeigt die Anzahl der vorgelagerten WEA, die drei Linien repräsentieren die verschiedenen Parametersätze.

DE PARK(27.1).png


Einzelne Reihe: Erhöhen der WDC anhand der Anzahl Luv-WEA

Zahlreiche Tests mit einreihgen Windfarmen zeigen, dass im Fall einer Windrichtung längs der WEA-Reihe die Wakeverluste im Lee tatsächlich geringer sind, als mit Standardeinstellungen berechnet. Die Änderung der Wake-Decay-Konstante nach Anzahl vorgelagerter WEA kann aber auch invers angewandt werden, so dass die WDC bei mehr WEA im Luv höher wird. Die folgenden Einstellungen wurden in Verbindung mit N.O.Jensen (EMD) 2005 für einreihige Windfarmen mit bis zu 7 WEA getestet:

Par.Satz1 Par.Satz2 Par.Satz3
A 0,6 0,3 0,9
B 0,6 0,8 0,4

Auch hier repräsentiert Parametersatz 1 die mittlere Erhöhung, Satz 2 für geringere und Satz 3 für stärkere Erhöhung:

DE PARK(27.2).png


Praxisanmerkung: Eine korrekte Wakeverlust-Berechnung erfordert eine stimmige Balance zwischen verwendetem Wakemodell, der Wake-decay-Konstante und evtl. den Deep-Array-Einstellungen (Lineare Gewichtung und WDC-Verringerung nach vorgelagerten WEA). Laufende Experimente zeigen, dass bei N.O.Jensen (EMD) 2005 eine 35%ige lineare Gewichtung in Kombination mit einer anhand einer Turbulenzzeitreihe modifizierten Wake-decay-Konstante die beste Reproduktion von tatsächlich gemessenen Wakeverlusten bringt. Wenn eine Lineare Gewichtung von 100% verwendet wird, sollte die WDC um 0,03 erhöht werden (von 0,04 auf 0,07 Offshore). Dann werden zwar die Wakeverluste entlang der Reihen überschätzt, aber das 360°-Ergebnis ist für den Testfall HR-1 gut. Für weitere Infos siehe Wakemodell-Validierungstests (Englisch).



Register Scaler

Die Winddatenauswahl im PARK-Modul sieht bei Verwendung eines Scalers wie folgt aus (hier für einen Meso-Scaler; PARK-Berechnungseinstellungen --> Register Scaler ):

Scaler DE(19).png

Wenn Meso-Daten verwendet werden (d.h. ein Scaler, der Meso-Daten handhabt), so muss pro METEO-Objekt mindestens eine Höhe über und eine Höhe unter der Zielhöhe gewählt werden (unter Berücksichtigung einer eventuellen Verdrängungshöhe). Die Vertikalextrapolation geschieht durch logarithmische Interpolation zwischen den Höhen des METEO-Objekts, nicht durch das Mikroskalen-Strömungsmodell.

Wenn Messdaten verwendet werden (d.h. ein Scaler der Messdaten handhabt), sollte ebnfalls jeweils eine Höhe unter und eine über der Zielhöhe gewählt werden, sofern diese vorhanden sind. In diesem Fall wird die Zielhöhe aus den vorgegebenen Höhen logarithmisch interpoliert. Liegt die Zielhöhe außerhalb des durch Messhöhen abgedeckten Bereichs, so wird die Vertikalextrapolation vom Mikroskalen-Strömungsmodell (WAsP oder .flowres) durchgeführt.

Die Shear-Höhen werden nicht für die Berechnung der Windgeschwindigkeiten herangezogen. Ihre Bedeutung beschränkt sich auf die Optionen zur Leistungskennlinien-Anpassung bezüglich Windscherungs-Korrektur sowie Richtungsänderungs-Korrektur.


Sowohl bei der Verwendung von Meso- als auch von Messdaten ist es möglich, mehrere lokale Messmasten oder Meso-Zeitreihen einzubeziehen, um eine graduelle Variation der Windbedingungen an einem Standort zu modellieren. In diesem Fall wird unter Horizontale Interpolation (unter der Liste der METEO-Objekte) entschieden, ob jeweils das nächstgelegene METEO-Objekt verwendet oder ob abstandsgewichtet wird.

Eine Abstandsgewichtung findet auf der Ebene des geostrophischen Windes statt, d.h. erst wird das lokale Terrain um den Mast (bzw. das Meso-Terrain um den Meso-Punkt) aus den Daten herausgerechnet; dann findet die Interpolation statt; und dann wird das Mikroskalige Terrain an den WEA-Positionen hineingerechnet. Durch diese Vorgehensweise kann eine Interpolation auch durchgeführt werden, wenn das Terrain zwischen zwei Messpunkten nicht homogen ist.

Die Gewichtung erfolgt entsprechend dem Kehrwert der quadrierten Abstände.

Beispiel:

Scaler DE(19.1).png


Wenn mehrere METEO-Objekte gewählt sind, müssen zeitgleiche Datensätze für Windgeschwindigkeit und -richtung vorliegen. Die Zeitstempel dürfen dabei um bis zu 50% voneinander abweichen (z.B. 5 Minuten bei 10-Minuten-Zeitreihen) um Defizite in der Synchronisierung der Masten handhaben zu können.

Bei Wahl der Option Abstandsgew., man. Zuordnung METEO-Objekte erscheint ein neues Register WEA<>Winddaten, auf dem ausgewählt werden kann, welche(s) METEO-Objekt(e) für jede einzelne WEA verwendet werden soll. Werden für einer WEA mehrere METEO-Objekte zugewiesen, so werden auch diese nach der oben erläuterten Methode abstandsgewichtet.

Scaler DE(19.2).png



Register 2.9 Zeitliche Variation

Die Berechnung der jährlichen Variation nach dem prä-windPRO-3.0-Modus führt nicht tatsächlich die Berechnung anhand einer Zeitreihe durch, sondern skaliert eine Zeitreihe so, dass ihre Summe mit dem Ergebnis einer Windstatistik-WAsP-Berechnung übereinstimmt. Diese Methodik ist inzwischen durch die Scaler-Berechnung obsolet, die die Zeitreihe tatsächlich als Grundlage der Berechnung verwendet. Der alte Modus steht weiterhin zur Verfügung, um Kompatibilität zu vorherigen Versionen zu gewährleisten.


DE PARK(33).png


Die Berechnung der jährlichen Variation der AEP kann für viele Zwecke verwendet werden. Die wichtigsten sind:

  1. Erzeugung einer 12-24-Matrix (12 Monate, 24 Stunden), die bei der Verhandlung von Einspeiseverträgen (PPA, Power Purchase Agreement) oder der Abschätzung, wie zeitlich unterschiedlich gestaffelte Einspeisevergütungen sich auf die Wirtschaftlichkeit auswirken, nützlich ist. Die ebenfalls berechnete Dauerkurve ist ein mächtiges Werkzeug, um herauszufinden, während welchen Teils des Jahres z.B. ein lokaler Energiebedarf durch die WEA gedeckt werden kann.
  2. Erzeugung einer Zeitstempel-für-Zeitstempel-Produktionsberechnung für jede WEA als Eingangsdaten für das Modul PERFORMANCE CHECK
  3. Erzeugung einer Zeitstempel-für-Zeitstempel-Produktionsberechnung für jede WEA zur Ausgabe als Datei oder über die Zwischenablage, z.B. zur Weiterbearbeitung in Excel.

Die erste Option lässt sich mit den Standardberichten der Berechnung erschlagen. Für die zweite Option wird innerhalb des PERFORMANCE CHECK-Moduls eine PARK-Berechnung mit Jährlicher Variation als Datenquelle angegeben.

Für die dritte Option müssen die Berechnungsergebnisse in eine Datei exportiert werden (Ergebnis in Datei). Dabei wird eine Textdatei erzeugt und kann in eine Tabellenkalkulation geladen werden.

Da die Datenmengen bei der 2. und 3. Option leicht ausufern, ist für den Datenexport standardmäßig nur die Gesamt-Park-AEP für jeden Zeitstempel vorgesehen. Werden Einzel-WEA ausgewählt (Alle WEA / Ausgewählte WEA), so werden fünf zusätzliche Datenspalten pro WEA erzeugt (siehe unten). Anstatt für jeden Zeitstempel können die Ausgabetabellen aggregierte Produktionen ausgeben (oben z.B. Monatlich). Dies sollte insbesondere dann getan werden, wenn in PERFORMANCE CHECK auch die tatsächlichen Vergleichsproduktionen nur monatlich aggregiert vorliegen.

ANMERKUNG: Bei allen Berechnungen der Jährlichen Variation werden die Ergebnisse so skaliert, dass sie den Ergebnissen der Standardberechnung entsprechen (die z.B. aus WAsP kommen). Die Ausnahme hierzu ist die Spalte Power im Ergebnis-in-Datei-Export, die das Roh-Ergebnis vor der Skalierung zeigt. Dieses Ergebnis wird auch bei Weiterverarbeitung in PERFORMANCE CHECK verwendet.

Wenn die Berechnung der Jährlichen Variation auf einer WTI-Datei basiert, werden deren einzelne Zeitstempel-Windgeschwindigkeiten anhand des Verhältnisses der mittleren WTI-Windgeschwindigkeit und der mittleren WEA-Windgeschwindigkeit skaliert.

Basiert die PARK-Berechnung (AEP) und die Jährliche Variation auf einem METEO-Objekt, ist der Prozess identisch.

Basiert die PARK-Berechnung (AEP) auf einem Terraindatenobjekt oder einer Windressourcenkarte und die Berechnung der Jährlichen Variation auf einem METEO-Objekt, dann werden die Weibullparameter für die Position des METEO-Objekts ermittelt (aus Terraindatenobjekt oder Windressourcenkarte); die Skalierung der METEO-Zeitreihe auf die einzelnen WEA erfolgt dann anhand der sektorweisen Windgeschwindigkeits-Unterschiede in der WAsP-Berechnung (bzw. Windressourcenkarte) zwischen METEO-Objekt-Position und WEA-Position.

Dieses Vorgehen geht davon aus, dass es sich bei dem METEO-Objekt um Messdaten handelt und dass das Terraindatenobjekt / die Windressourcenkarte die nötigen Daten bieten, um für dessen Position die Weibullverteilung zu ermitteln.

Beachten Sie in diesem Zusammenhang die Möglichkeit, ein Terraindatenobjekt für Transferfunktion anzugeben. Hier kann ein eigenes Terraindatenobjekt zur Berechnung der METEO-Position definiert werden, und es kann verwendet werden, wenn z.B. Mesoskalen-Daten verwendet werden, die eine Skalierung benötigen, um für den Microscale zuzutreffen. Das Terraindatenobjekt für die Transferfunktion kann dann z.B. eine Rauigkeitsrose (bis WAsP 9) mit flachem Gelände sein. Durch eine Anpassung der Rauigkeiten kann Sektor für Sektor eine Übereinstimmung zwischen den Mesoskalen-Daten und einem lokalen Mast oder WEA-Produktionen herbeigeführt werden. Dies ist ein iterativer Prozess, der üblicherweise mit Hilfe des PERFORMANCE CHECK-Moduls bewältigt wird, er hat jedoch großes Potenzial zum "herunterskalieren" von Mesoskalen-Daten um besser mit dem realen Wind übereinzustimmen.

Für Option (1) oben muss ein vollständiges und repräsentatives Jahr Winddaten ohne Lücken vorliegen. Dies wird am besten durch die Erzeugung einer *.wti-Datei (siehe METEO-Analyzer) sichergestellt. Der Knopf Ansicht kann verwendet werden, um deren Inhalt und Eignung zu überprüfen (auch von METEO-Objekten).


DE PARK(34).png


Für Option (2) und (3) oben ist die Länge der Periode weniger wichtig. Hier ist es am wichtigsten, dass die Zeitreihendaten gleichzeitig mit tatsächlichen Produktionsdaten vorliegen. Eine Berechnung mit PERFORMANCE CHECK kann mit wenigen Monaten oder mehreren Jahren Daten durchgeführt werden. Ein Problem kann jedoch die Menge an zu verarbeitenden Daten sein. Wenn mehrere hundert WEA mit mehreren Jahren Daten in 10min-Auflösung berechnet werden sollen, kann dies zu Speicherproblemen auf dem Rechner führen. Standardmäßig ist deshalb in den Daten nur die Gesamtsumme aller WEA aufgeführt. Klicken sie unter Ausgabespezifikationen entweder Alle WEA oder Ausgewählte WEA an und wählen Sie einen angemessenen Zeitraum unter Zeitreihe aggregieren.


DE PARK(35).png


Beispiel-Exportdatei (Ergebnis in Datei) in Excel mit 3 WEA. Jede Spalte mit WEA-Ergebnissen ist mit der laufenden Nr. der WEA überschrieben.

Time stamp, Wind speed, Direction, Temperature, Pressure: Diese Daten kommen aus dem verwendeten METEO-Objekt (oder WTI-Datei). Wenn Temperatur und/oder Druckdaten vorhanden sind, wird jeder einzelne Zeitstempel Luftdichte-Korrigiert. Druckdaten sind weniger wichtig als Temperaturdaten, da die Temperaturvariationen üblicherweise die Luftdichte stärker beeinflussen als der Druck.

AEP scaled: Die berechnete AEP in der Form skaliert, dass die Spaltensumme dem Ergebnis der PARK-Berechnung (Hauptergebnis) entspricht. Dies kann verwendet werden wenn z.B. ein Energieversorger die Produktion Stunde für Stunde wissen will, um den erwarteten Wert der Windproduktion abzuschätzen.

Power: Die NICHT skalierte Energieproduktion für jeden Zeitstempel. Dies sollte verwendet werden, wenn die Produktion mit den SCADA-Daten einer WEA verglichen werden soll.

Free wind speed: Windgeschwindigkeit, die von WAsP für die WEA-Position berechnet wurde, vor Wake-Reduktion.

Wake wind speed: Windgeschwindigkeit wie oben, aber mit Wake-Reduktion

Air density: Berechnete Luftdichte für den Zeitstempel und die spezifische WEA


PARK-Ergebnisse

Die PARK-Ergebnisse bestehen einerseits aus den ausdruckbaren Berichten, zum anderen können aber auch sehr viele Ergebnisse über das Ergebnis-in-Datei-Feature exportiert und in Tabellenprogrammen oder anderer externer Software weiter verarbeitet werden (siehe Ausgewählte Ergebnis-in-Datei-Exports.

Die Ergebnisse von Scaler-Berechnungen unterscheiden sich von denen Windstatistik-basierter Berechnungen in einigen Punkten:

  • Die Scaler-Methodik erlaubt es, neben der freien Windgeschwindigkeit auch die Wake-reduzierte Windgeschwindigkeit auszugeben.
  • In der Windstatistik-basierten Berechnung werden Veränderungen durch Hügel und Hindernisse (relativ zu flachem/hindernisfreiem Gelände) prozentual in Bezug auf die mittlere Jährliche Energieproduktion angegeben. In der Scaler-basierten Berechnung fallen diese Informationen nicht an, aber über Ergebnis-in-Datei können die Speed-Up-Faktoren (Strömungsänderungen) auf die Windgeschwindigkeit in Bezug auf die unterschiedlichen Geländeeinflüsse ausgegeben werden (Ergebnis PAKR-Ergebnis WAsP 11).


PARK-Hauptergebnis

Das Hauptergebnis einer PARK-Berechnung gibt im Regelfall die Mittlere Jährliche Energieproduktion (AEP, Annual Energy Production) für den Windpark und die einzelnen WEA wieder. Bei der Scalerberechnung kann alternativ statt der AEP auch die Produktion eines konkreten Zeitraums ausgegeben werden.

Hauptergebnis-Bericht für eine Windstatistik-basierte Berechnung, bei der Existierende WEA als Bestandteil des betrachteten Windparks markiert wurden (siehe Existierende WEA, Option Wird als WEA im Windpark behandelt):


DE PARK(36).png

DE PARK(36.1).png


Im Kopf der Hauptergebnisse der Energieberechnungen sind neben der Karte die Annahmen bezüglich verwendeter Windstatistik(en), Luftdichte, Wake-Decay-Konstante und WAsP-Version wiedergegeben (soweit relevant).


DE PARK(37).png


Die bei Windstatistik-basierten Berechnungen auf den Hauptergebnissen aufgeführten Referenzdaten beziehen sich auf die Position des jeweiligen Terraindatenobjekts bzw. METEO-Objekts (ggf. mehrere davon) und die in den Berechnungsvoraussetzungen genannte Berechnungshöhe.

Zur Äquivalenten Rauigkeit siehe hier.

Die Tabelle „Hauptergebnis für Windpark-Berechnung“ enthält oben fünf Ergebniszeilen für verschiedene Kombinationen von Neuen und Existierenden WEA. Wenn Existierende WEA lediglich als Referenz-WEA genutzt werden oder es ausschließlich Neue WEA gibt, so enthält diese Tabelle nur eine einzige Zeile entsprechend der Zeile "Nur neue WEA" oben, und es gibt keine Tabelle mit der Produktion der existierenden WEA. Trotzdem werden die Wakes von Existierenden WEA auch in diesem Fall berücksichtigt, worauf auf diesen Berichten durch eine Fußnote hingewiesen wird.

Die existierenden WEA erscheinen in diesem Fall auf einem eigenen Bericht Referenz-WEA (s.u.). In einer Berechnung kann auch eine Mischung aus Existierenden WEA, die als PARK-WEA betrachtet werden, und solchen, bei denen dies nicht der Fall ist, vorkommen.

Die Spalte Wake-Verluste zeigt an, wie viel der theoretischen Produktion der WEA durch die Wakes der benachbarten WEA verloren geht. Anstelle der Wake-Verluste kann hier auch der Park-Wirkungsgrad (100 minus Wake-Verlust) angegeben werden (siehe Darstellungsoptionen).

Der Kapazitätsfaktor ist der Anteil an Jahresstunden, die die WEA bei Nennleistung produzieren würde, um den berechneten Energieertrag zu erzielen. Beispiel: Für eine 600kW-WEA wird ein Jahresertrag von 2643 MWh berechnet. Ertrag geteilt durch Nennleistung: 2.643.000 kWh : 600 kW = 4405 Stunden. Ein Jahr hat im Mittel 8766 Stunden; 4405 : 8766 = 0,503; der Kapazitätsfaktor ist 50,3 %.

Bei einer Scaler-basierten Berechnung enthalten die Tabellen des Hauptergebnis-Berichts zusätzlich eine Spalte für die Wake-reduzierte Windgeschwindigkeit:


DE PARK(38).png


Bericht Referenz-WEA

Wenn in Ihrem Projekt existierende WEA vorkommen, steht der Teilergebnis-Ausdruck Referenz-WEA zur Verfügung, auf dem die unter den gegebenen Voraussetzungen berechneten Erträge für die existierenden WEA den im Existierende-WEA-Objekt auf dem Register PARK angegebenen tatsächlichen Erträgen gegenübergestellt werden:


DE PARK(39).png


Der Güte-Faktor in der rechten Spalte berechnet sich aus:

Tatsächlicher Ertrag : Berechneter Ertrag = Gütefaktor

Wobei angenommen wird, dass der tatsächliche Ertrag mit Hilfe eines Windindex langzeitkorrigiert wurde. Dies ist dann nicht notwendig, wenn der berechnete Ertrag auf Messdaten basiert, die im gleichen Zeitraum gemessen wurden, in dem der tatsächliche Ertrag ermittelt wurde. In beiden Fällen bedeutet ein Güte-Faktor von 100%, dass die berechnete exakt mit der tatsächlichen Produktion übereinstimmt. Ist der Güte-Faktor geringer, z.B. 90%, so produziert die WEA 10% weniger als berechnet wurde. Dies kann allerdings auch auf andere Gründe zurückzuführen sein als eine ungenaue Berechnung, z.B. auf Netzverluste oder Anlagenverfügbarkeit. Um also tatsächlich die Qualität der Berechnung zu beurteilen, müssen die Produktionsdaten der existierenden WEA auch von diesen Faktoren bereinigt werden.


Weitere Berichte

Produktionsanalyse: Zeigt eine sektorweise Aufschlüsselung der Produktion sowie weiterer Kennwerte.

Leistungskennlinien-Analyse stellt die Original-Leistungskennlinie aus dem WEA-Katalog der auf Standort-Luftdichte umgerechneten Leistungskennlinie gegenüber.

Gelände (oder "Terrain"; nur bei Windstatistik-PARK): Dokumentiert die Pfadnamen der Orographie- und Rauigkeitsdateien sowie deren Randkoordinaten und Abmessungen. Bei Verwendung von Rauigkeitsrosen (nur bis WAsP 10.0) werden diese dargestellt.

Analyse der Windverhältnisse: Stellt bei Windstatistik-PARK die Weibull-Verteilung, die von WAsP für die Berechnungsposition ermittelt wurde, in grafischer und tabellarischer Form dar. Bei Scaler-PARK werden mittlere Windgeschwindigkeiten statt Weibullverteilungen dargestellt.

Windpark-Leistungskennlinie (nur bei Windstatistik-PARK): Zeigt die theoretische Leistung des Gesamt-Windparks für die unterschiedlichen Windgeschwindigkeiten und Windrichtungen. Die Kennlinie enthält die Wake-Versluste, aber keine Verluste aufgrund von terrainbedingten Unterschieden der Windgeschwindigkeit innerhalb des Parks.

WEA-Abstände: enthält die Abstände von jeder WEA zur jeweils nächstgelegenen WEA. Der Abstand wird in Metern und in Rotordurchmessern angegeben; wenn die beiden WEA unterschiedlichen Typs sind sowohl in Durchmessern der größeren WEA als auch in Durchmessern der kleineren WEA.

Windstatistik-Info (nur bei Windstatistik-PARK): Zeigt die Metadaten der verwendeten regionalen Windstatistik. Je nach Datenquelle und WAsP-Version, mit der die Windstatistik erzeugt wurde, können die angezeigten Informationen mehr oder weniger umfangreich sein.

Zeitliche Variation AEP (nur Zeitreihen-basierte Berechnungen; Scaler oder 2.9-Modus): 24-12-Tabellen (monatliche Tagesgänge) in MWh und MW, Gesamt-Jahresgang und Tagesgang sowie Dauerkurve (wie viele Stunden pro Jahr ist mindestens eine Produktion X zu erwarten). Diese Informationen werden häufig in Zusammenhang mit PPA-Verhandlungen (Power-Purchase-Agreement) benötigt.

Scaling-Informationen (nur Scaler-PARK): Dokumentation der verwendeten Scaler-Komponenten und der Postkalibrierungen.

Karte: Karte der in der Berechnung verwendeten Objekte. Über die Darstellungsoptionen können Maßstab, Kartenmitte und andere Details geändert werden.


Ausgewählte Ergebnis-in-Datei-Exports

Welche Daten genau exportiert werden können, hängt vom spezifischen Berechnungstyp ab. Die beiden zentralen exportierbaren Ergebnisse sind Park-Ergebnis und Park time variation (letzeres nur bei Scaler-Berechnungen).

DE PARK(42).png


Park-Ergebnis

DE PARK(43).png

Beim Export Park-Ergebnis sind die ersten 26 Spalten (A-Z) weitgehend gleich belegt, unabhängig vom Berechnungstyp. Die weiteren Spalten unterscheiden sich zwischen Scaler-Berechnungen und Nicht-Scaler-Berechnungen.

Es gibt für jede WEA eine Zeile, wobei zuerst die Neuen, dann die Existierenden WEA genannt sind. Innerhalb der Gruppen sind die WEA nach Systemkennung sortiert.


Gemeinsame Spalten

Kopfzeile erste Datenzeile Erläuterung
A Label 1 Bezeichnung (wie Sortierkriterium Hauptergebnis)
B New Status der WEA (New = Neue; Exist = Existierende)
C LIB file C:\[...] Pfad zur verw. Windstatistik; Bei Scaler-Berechnung: Name des METEO-Objekts; wenn mehrere, dann mit ";" getrennt.
D Rechts 3.534.870 Rechtswert im verw. Koordinatensystem
E Hoch 5.698.603 Hochwert
F Z 317,8 Z-Koordinate (Fuß der WEA)
G-M Spalten zum WEA-Typ
G Valid No Kennung, ob die WEA noch hergestellt wird (Yes = Ja; No = Nein; lt. Herstellerangaben)
H Manufact. ENERCON Hersteller des WEA-Typs
I Type-generator E-82-2.000 WEA-Typ
J Power, rated 2.000 Nennleistung
K Rotor diameter 82 Rotordurchmesser
L Hub height 98,3 Nabenhöhe
M Row data/Description ENERCON E-82 2[...] Beschreibung lt. Objekteigenschaften
N-O Spalten zur Leistungskennlinie
N Creator EMD Ersteller der Leistungskennlinie
O Name Level 0 - [...] Name der Leistungskennlinie
P User label 6 Anwenderkennung, wenn vorhanden
Q Result 4.138,45 Jährliche Energieproduktion inkl. Wake-Effekte der anderen WEA
R Efficiency 89,7383 Parkwirkungsgrad
S Regional/Correction Factor 1 Regionaler Korrekturfaktor der Windstatistik
T Equivalent Roughness 1,9 vgl. Äquivalente Rauigkeit
U Free mean wind speed 5,95 Freie Windgeschwindigkeit in Nabenhöhe
V HP-value 91,5 Vergleich der Produktion mit der standardisierten Produktion nach HP-Kennlinie
W Calculated prod. without new WTGs 0 Berechnete Produktion existierender WEA ohne neue WEA (nur für exist. WEE)
X Actual wind corrected energy 0 tatsächliche Windindex-Korrigierte Produktion (nur für exist. WEA; nur wenn im Exist.-WEA-Objekt angegeben)
Y Goodness Factor - Gütefaktor: Berechnete Produktion / Tatsächliche Produktion (nur für exist. WEA; nur wenn Spalte X angegeben ist)
Z Curtailment loss 3,1 Verlust durch Curtailments, die im WEA-Objekt definiert und in der Berechnung verwendet wurden


weitere Spalten für Windstatistik-Berechnung

Kopfzeile erste Datenzeile Erläuterung
AA A (Sum) 6,72 Weibull-A-Parameter, gesamt
AB k (Sum) 1,1994 Weibull-k-Parameter, gesamt
AC-AE A, k und Häufigkeit für Sektor 0
AF-AH ebenso, Sektor 1; u.s.w. für alle Sektoren.
folgende Spalten für Bsp. 12 Sektoren
BM Air density 1,198 Berechnete Luftdichte in NH
BN Displacement height 0 Verdrängungshöhe (0 = keine; "sector wise" = Verdrüngungshöhen-Rechner verwendet; ansonsten: aus Objekteigenschaften)
BO Decrease due to obstacles 0 Reduktion der AEP aufgrund von WAsP-Hindernis-Effekt
BP Increase due to hills 4,86 Zunahme der AEP aufgrund des WAsP-Hügel-Effekts
BQ Sensitivity 2,22 Sensitivität: Zunahme der AEP pro Zunahme der Windgeschwindigkeit in %
Folgende Zeilen nur wenn RIX-Berechnung durchgeführt wurde
BR Reference site RIX 0,5 RIX des Referenzstandorts
BS WTG RIX 1,3 RIX der WEA
BT Delta RIX (WTG site - Reference) 0,8 Delta des RIX
BU RIX correction -26,38 Aufgrund des Delta RIX ermittelte Korrektur


weitere Spalten für Scaler-Berechnung

Kopfzeile erste Datenzeile Erläuterung
AA Wake reduced mean wind speed 6,15 Mittlere Wake-reduzierte Windgeschwindigkeit
AB Free WS (0) 4,86 Freie Windgeschwindigkeit in Sektor (0)
AC Red WS (0) 4,86 Wake-reduzierte Windgeschwindigkeit in Sektor (0)
AD f (0) 4,9 Häufigkeit des Sektors (0)
AE-AG Wie AA-AC, aber für Sektor (1)
AH-[..] ebenso für weitere Sektoren
folgende Spalten für Annahme 12 Sektoren
BL Air density 1,198 Berechnete mittlere Luftdichte in NH
BM Displacement height 0 Verdrängungshöhe (0 = keine; "sector wise" = Verdrüngungshöhen-Rechner verwendet; ansonsten: aus Objekteigenschaften)
BN Decrease due to obstacles 0 Reduktion der AEP aufgrund von WAsP-Hindernis-Effekt. Bei Scaler-Berechnung nicht verwendet ("Sector wise")
BO Increase due to hills 4,86 Zunahme der AEP aufgrund des WAsP-Hügel-Effekts. Bei Scaler-Berechnung nicht verwendet ("Sector wise")
BP Sensitivity 2,22 Sensitivität: Zunahme der AEP pro Zunahme der Windgeschwindigkeit in %


Park time variation

Zeitreihen-Export für Scaler-Berechnungen. In welcher zeitlichen Auflösung die Zeitreihe ausgegeben wird, wird in den Berechnungseinstellungen gewählt (siehe PARK: Register Optionen (Scaler)).

Unten ist ein Beispiel mit Standardauflösung (monatlich) wiedergegeben.

DE PARK(41).png

Die Spalteninhalte sind in den folgenden Tabellen erläutert.


Kopfzeilen

1 A:Berechnungsname / B:"Scaler" / C:Scalername / D:"Meteo data" / E:METEO-Objektname
2 A:Berechnungsdatum / D:Referenz-WEA: Erste WEA oder die WEA, die auf Register Wake als Richtungsgeber gewählt ist / ab Q:Referenznummer der Einzel-WEA
3 Kopfzeilen des folgenden Tabellenteils
4 Einheiten-Zeile des folgenden Tabellenteils
5-[..] Tabellenteil


Tabellenspalten

Kopfzeile erste Datenzeile Erläuterung
A Time-Stamp 01.01.1993 01:00 Zeitstempel, für den die Zeile gilt. Bei Datenaggregierung ist jeweils der erste Zeitstempel des Intervalls angegeben.
B Power 9291,2 Mittlere Leistung des Windparks während Intervall unter Berücksichtigung von evtl. Curtailments (Spalte O und die analogen Spalten bei den Einzel-WEA)
C Time 743 Anzahl Stunden im Intervall (multipl. mit Spalte B → Produktion)
D - P Alle Angaben in Spalten D - P beziehen sich auf die Position und Nabenhöhe der Referenz-WEA (s.o., Zeile D2)
D Free wind speed 10,5 Berechnete freie Windgeschw.
E Reduced wind speed 10,0 Wake-reduzierte Windgeschw.
F Wind direction 220,1 Windrichtung
G Temperature - Temperatur; nur wenn auf Register "Leistungskennlinie" als Zeitreihe gewählt
H Pressure - Luftdruck; nur wenn auf Register "Leistungskennlinie" als Zeitreihe gewählt
I Air density 1,205 Luftdichte
J WDC Turbulence - Wake-Decay-Konstante, wenn diese aus einer Turbulenzzeitreihe berechnet wird
K WDC 0,075 Wake-Decay-Konstante für Intervall. Wenn die Ref.WEA in der Windrichtung (Spalte F) die hintere WEA im Park ist, ist keine WDC angegeben.
L Turbulence - Turbulenz, wenn für Leistungskennlinien-Korrektur verwendet
M Shear - Windscherung, wenn für Leistungskennlinien-Korrektur verwendet
N Veer - Richtungsänderung, wenn für Leistungskennlinien-Korrektur verwendet
O Curtailment - Im Intervall verwendete LK entsprechend Curtailment-Berechnung (nur bei max. zeitlicher Auflösung). 0 = Standard, [1...] entsprechend Index auf Bericht "Curtailment-Annahmen"
P Ref power - Referenzwert der Leistungskennlinie bei wakereduzierter Windgeschwindigkeit
Q All corrections - Alle Korrekturen, die auf die Leistungskennlinie angewandt wurden (ggf. über Mittelungsintervall gemittelt)
R Air density correction - Anteil der Luftdichte-Korrektur an Spalte Q
S Turbulence correction - Anteil der Turbulenz-Korrektur an Spalte Q
T Shear correction - Anteil der Windscherungs-Korrektur an Spalte Q
U Veer correction - Anteil der Richtungsverdrehungs-Korrektur an Spalte Q
V Power 1261,00 Produktion des Intervalls für WEA 1
W-AN Wie Spalten D-P, jedoch für WEA 1
AO-BG Wie Spalten Q-AD, jedoch für WEA 2 (19 Spalten)
BH-[..] usw. für WEA 3,4,5 (jeweils 19 Spalten)

Das Tabellenformat ist unabhängig davon, welche Korrekturen (Luftdichte / Wake-Decay-Konstante) verwendet werden - nicht verwendete Korrekturen führen ggf. zu leeren Spalten. Dies erleichtert die Auswertung mit standardisierten eigenen Tabellentools.




Literatur:

  1. 1.0 1.1 vgl. http://help.emd.dk/knowledgebase/content/ReferenceManual/Wake_Model.pdf
  2. 2.0 2.1 Rathmann, O. S., Hansen, B. O., Leon, J. P. M., Hansen, K. S., & Mortensen, N. G. (2017). Validation of the Revised WAsP Park Model. Poster session presented at WindEurope 2017, Amsterdam, Netherlands.
  3. Hintergrund.
  4. 4.0 4.1 Nicolai Gayle Nygaard and Sidse Damgaard Hansen 2016 J. Phys.: Conf. Ser. 753 032020; Paper bei http://iopscience.iop.org (letzter Abruf 15.10.2018)
  5. 5.0 5.1 Pena Diaz, A., Réthoré, P-E., & van der Laan, P. (2016). On the application of the Jensen wake model using a turbulence-dependent wake decay coefficient: the Sexbierum case. Wind Energy, 19, 763–776. DOI: 10.1002/we.1863 Paper bei http://orbit.dtu.dk (letzter Abruf: 15.10.2018)
  6. siehe https://www.emd.dk/files/PSO%20projekt%205899.pdf
  7. siehe http://help.emd.dk/WindPRO/content/TechNotes/TechNote_5_Park%20model%20revision.pdf
  8. Nicolai Gayle Nygaard 2014 J. Phys.: Conf. Ser. 524 012162; Paper bei iopscience.iop.org
  9. IEC 61400-12-1 Ed. 2.0, Wind turbines - Part 12-1: Power performance measurements of electricity producing wind turbines, Edition 2.0; https://webstore.iec.ch/publication/60076 (letzte Prüfung 17.03.2017)
  10. windPRO Technical Note 5: Park model revision; EMD 2016; Weblink
  11. u.a. Gerd Habenicht: Offshore Wake Modelling; Präsentation am 29.6.2011 bei Renewable UK Offshore Wind 2011
  12. Mathieu Gaumond: Evaluation and Benchmarking of Wind Turbine Wake Models; DTU, 30.06.2012

Cite error: <ref> tag with name "WK1" defined in <references> is not used in prior text.