Handbuch Lasten

From Wiki-WindPRO
Jump to navigation Jump to search

Zur deutschen Hauptseite | Alle deutschsprachigen Seiten

5.0 LASTEN – SITE COMPLIANCE & LOAD RESPONSE

5.1 Einführung, Begriffserklärungen und Schritt-für-Schritt-Anleitung

Ein vernünftiges Layout und einen passenden Anlagentyp auszuwählen gehören zu den wichtigsten Schritten bei der Entwicklung eines Windenergie-Projekts. Windenergieanlagen sind gemäß einer Reihe von klimatischen Anforderungsstandards, z.B. den IEC Klassen, für eine Laufzeit von 20 Jahren ausgelegt. Die römische Zahl definiert dabei die Windgeschwindigkeitsklasse I, II oder III und der Buchstabe steht für die Turbulenzklasse A, B oder C. IEC IA beschreibt damit die stärkste Auslegungsklasse, die schwächste ist IEC IIIC.

Die Errichtung einer ungeeigneten WEA an einem Standort einer höheren Beanspruchungsklasse kann zu vorzeitigem Verschleiß führen und ein Projekt ruinieren. Andererseits kann der Einsatz einer zu hoch klassifizierten WEA unnötig hohe Kosten verursachen, die das Projekt unfinanzierbar machen.

Die windPRO-Module SITE COMPLIANCE und LOAD RESPONSE helfen den Anwendern bei der Entscheidung, welche Anlagenklasse für den Standort geeignet ist.

Die Anforderungen der WEA-Auslegungs-Klassen sind festgelegt in der internationalen Richtlinie:

IEC 61400-1 ed. 3 (2010) “Wind turbines Part 1 - Design requirements” [1, 2]


Die meisten Abschnitte betreffen Designanforderungen der Standard-WEA-Klassen. Kapitel 11 beschreibt den “Nachweis der strukturellen und elektrischen Eignung einer WEA für standortspezifische Bedingungen”, also die Bewertung, ob ein Anlagentyp für die betreffenden Standortbedingungen und das Layout geeignet ist, mit anderen Worten: Ob “SITE COMPLIANCE“ vorliegt.


5.1.1 Anforderungen der Richtlinie IEC 61400-1 ed. 3 (2010)

Tabelle 1, entnommen der Richtlinie IEC 61400-1 ed. 3 (im Folgenden „IEC-Richtlinie“ genannt), definiert die grundlegenden Design-Parameter der oben beschriebenen Standard-Auslegungsklassen.


BILD


Abb. 1. Tabelle 1 aus IEC 61400-1 ed. 3 (2010)

Abschnitt 11 der IEC-Richtlinie nennt sieben Hauptparameter zur Standort-Beurteilung. Der erste Parameter beschreibt die topographische Komplexität des Geländes, die anderen sechs Parameter betreffen die Windverhältnisse am Standort. Die sieben IEC-Hauptprüfungen sind:

  • Topographische Komplexität des Geländes
  • Extrem-Wind
  • Effektive Turbulenz
  • Windgeschwindigkeitsverteilung
  • Windgradient (Windshear)
  • Neigung der Anströmung
  • Luftdichte

Die Richtlinie beinhaltet zudem einige zusätzliche Umgebungsbedingungen, die bewertet werden sollen. Hiervon wurden drei Parameter ausgewählt, die gelegentlich kritisch sein können und mit akzeptabler Genauigkeit abgeschätzt werden können. Diese Parameter, bezeichnet als „Andere Prüfungen“, sind:

  • Erdbebenrisiko
  • Blitzrate
  • Extremer und normaler Temperaturbereich

Die nicht erfassten Parameter sind: „Vereisung, Hagel und Schnee“, „Feuchtigkeit“, „Sonneneinstrahlung“, „chemisch aktive Substanzen“ und „Salzhaltigkeit“.

Abschnitt 11.1 der IEC-Richtlinie ([1], S. 54, beschreibt, wie die standortspezifischen Bedingungen mit den Auslegungsbedingungen der betrachteten IEC-Klasse, z.B. IIB, verglichen werden, um nachzuweisen, dass die Auslegungsbedingungen nicht überschritten werden.

„…Es muss nachgewiesen werden, dass die Standortbedingungen die :Integrität der Konstruktion nicht verletzen. Der Nachweis umfasst die topographische Komplexität des Standorts, siehe 11.2, und eine Bewertung der Windbedingungen am Standort, siehe 11.3. Für den Nachweis der Integrität der Konstruktion können zwei Methoden angewendet werden:
a) ein Nachweis, dass alle diese Bedingungen weniger schwerwiegend sind als die, die bei der Auslegung der WEA angenommen wurden, siehe 11.9;
b) ein Nachweis der Integrität der Konstruktion für Bedingungen, die jede für sich gleich oder schwerwiegender sind als die am Standort, siehe 11.10.
Wenn eine der Bedingungen schwerwiegender ist als die bei der Auslegung angenommenen, muss die elektrische und strukturelle Zuverlässigkeit mit der zweiten Methode nachgewiesen werden.“

Kurz gesagt, a) bedeutet, dass wenn alle IEC-Prüfungen in SITE COMPLIANCE unkritisch sind, kann davon ausgegangen werden, dass die IEC-Klasse zum Standort passt. Wenn min. eine der Prüfungen Überschreitungen zeigt, muss Ansatz b) gewählt werden, der einer Lastberechnung über LOAD RESPONSE basierend auf den Ergebnissen aus SITE COMPLIANCE entspricht.


5.1.2 Typische Anwendungsmöglichkeiten

SITE COMPLIANCE kann mit unterschiedlichen Eingangsdaten und externen Berechnungsmodellen verwendet werden. Es gibt drei Hauptanwendungsarten:

  • (I) Mast und Strömungsmodell
  • (II) Nur Messmastdaten
  • (III) Keine Messmastdaten

Die volle Funktionalität wird erreicht, wenn sowohl Messmastdaten mit mehreren Messhöhen für das Projekt vorliegen als auch die externen Berechnungsmodelle WAsP und WAsP Engineering (ab Version 3, im folgenden „WEng“, eigene Lizenzen werden benötigt) und WAsP-CFD-Ergebnisse verfügbar sind.

Unter Verwendung von WAsP kann das Modul in Modus I (Hauptmodus) arbeiten. In diesem Modus ist eine WEng-Lizenz oder WAsP-CFD-Ergebnisse nicht zwingend notwendig, ermöglichen aber weitere Berechnungs-Optionen, die die Qualität der Ergebnisse verbessern können.

Minimale Anforderungen gelten in Modus II Nur Messmastdaten. Dieser Modus benötigt lediglich die Daten eines Messmasts am Standort mit verschiedenen Messhöhen und keine externen Software-Lizenzen, um die Hauptprüfungen durchzuführen.

Modus III, Keine Messmastdaten, findet Anwendung, wenn kein Messmast am Standort errichtet ist, es aber viele WEA in der Gegend gibt, wie in Deutschland oder Dänemark. Dieser Modus erfordert gültige Lizenzen für WAsP und WEng oder WAsP-CFD-Ergebnisse sowie regionale Windstatistiken (Windatlas- / lib-Datei) um alle sieben IEC-Hauptprüfungen durchzuführen.

In Modus I gibt es zwei Einstellungsmöglichkeiten für WAsP: Windstatistik mit Langzeitbezug und Messmastdaten. Die erste Möglichkeit findet Verwendung, wenn per MCP für jeden Messmasten am Standort eine Windstatistik mit Langzeitbezug erstellt wurde. Dadurch wird erreicht, dass die Ergebnisse dieser WAsP-Berechnung denen der PARK-Berechnungen entsprechen, die auf diesen Windstatistiken basieren. Die zweite Möglichkeit (Messmastdaten) beinhaltet die STATGEN-Berechnung für jeden Messmast und vereint so beide Schritte der WAsP-Prozedur unter Verwendung der Messmastdaten. Diese Option bietet auf einem zusätzlichen Register die Möglichkeit einer vereinfachten Langzeitkorrektur im SITE COMPLIANCE-Modul, wie es in der IEC-Richtlinie gefordert ist, wenn die Windmessdaten nicht langzeit-repräsentativ sind.


5.1.3 Schritt für Schritt-Anleitung

SITE COMPLIANCE Wählen Sie den Modus:

  • (I) Mast und Strömungsmodell
  • (II) Nur Messmastdaten
  • (III)Keine Messmastdaten


Modus I (Mast und Strömungsmodell)

  • Wählen Sie das gewünschte Strömungsmodell
  • Wählen Sie die WAsP-Option Windstatistik mit Langzeitbezug oder Messmastdaten
  • Definieren Sie die WEA-Auslegungsklasse - wenn nicht bereits individuell in den WEA-Eigenschaften definiert
  • Wählen Sie den / die Standortmasten mit Haupthöhe und Höhen für die Shear-Berechnung
  • Wählen Sie einen Mast mit Zweck Langzeit-Referenz, wenn ein solcher verfügbar ist
  • Definieren Sie das WEA-Layout
  • Definieren Sie die Mast – WEA Zuordnung, wenn mehrere Masten vorhanden sind
  • In WAsP Messmastdaten-Modus: Berechnen und evaluieren Sie die Langzeitkorrektur
  • Berechnen Sie mit den Strömungsmodellen:
  • Wählen Sie (ein) Terraindatenobjekt(e) (Zweck STATGEN) und starten Sie die WAsP Berechnung
  • Wählen Sie ein Terraindatenobjekt und starten Sie die WEng-Berechnung, wenn Sie über eine Lizenz verfügen
  • Wählen Sie (eine) WAsP-CFD-Ergebnisdatei(en) und starten Sie die WAsP-Berechnung
  • Register IEC-Prüfungen: Wählen Sie die relevanten Hauptprüfungen und Andere Prüfungen
  • Klicken Sie Bearb. für jede gewählte Berechnung, ändern Sie die Einstellungen, wenn nötig und drücken Sie Berechnen
  • Prüfen Sie die Ergebnisse jedes Parameters und das Gesamtergebnis aller Prüfungen
  • Drücken Sie OK, überprüfen Sie die Berichte und exportieren Sie Ergebnisse mit Ergebnis in Datei


Modus II (Nur Messmastdaten)

  • Definieren Sie die WEA-Auslegungsklasse – wenn nicht bereits individuell in den WEA-Eigenschaften definiert
  • Wählen Sie den / die Standortmasten mit Haupthöhe und Höhen für die Shear-Berechnung
  • Wählen Sie einen Mast mit Zweck Langzeit-Referenz, wenn ein solcher verfügbar ist
  • Definieren Sie das WEA-Layout
  • Definieren Sie die Mast – WEA Zuordnung, wenn mehrere Masten vorhanden sind
  • Berechnen und evaluieren Sie die Langzeitkorrektur
  • Register IEC-Prüfungen: Wählen Sie die relevanten Hauptprüfungen und Andere Prüfungen
  • Klicken Sie Bearb. für jede gewählte Berechnung, ändern Sie die Einstellungen, wenn nötig und drücken Sie Berechnen
  • Prüfen Sie die Ergebnisse jedes Parameters und das Gesamtergebnis aller Prüfungen
  • Drücken Sie OK, überprüfen Sie die Berichte und exportieren Sie Ergebnisse mit Ergebnis in Datei


Modus III (Keine Messmastdaten)

  • Wählen Sie die gewünschten Strömungsmodelle
  • Definieren Sie die WEA-Auslegungsklasse – wenn nicht bereits individuell in den WEA-Eigenschaften definiert
  • Definieren Sie das WEA-Layout
  • Berechnen Sie mit den Strömungsmodellen:
  • Wählen Sie (ein) Terraindatenobjekt(e) (Zweck STATGEN) und starten Sie die WAsP Berechnung
  • Wählen Sie ein Terraindatenobjekt und starten Sie die WEng-Berechnung, wenn Sie über eine Lizenz verfügen
  • Wählen Sie (eine) WAsP-CFD-Ergebnisdatei(en) und starten Sie die WAsP-Berechnung
  • Register IEC-Prüfungen: Wählen Sie die relevanten Hauptprüfungen und Andere Prüfungen
  • Klicken Sie Bearb. für jede gewählte Berechnung, ändern Sie die Einstellungen, wenn nötig und drücken Sie Berechnen
  • Prüfen Sie die Ergebnisse jedes Parameters und das Gesamtergebnis aller Prüfungen
  • Drücken Sie OK, überprüfen Sie die Berichte und exportieren Sie Ergebnisse mit Ergebnis in Datei


LOAD RESPONSE

  • Aktivieren Sie LOAD RESPONSE auf dem Register Hauptteil in SITE COMPLIANCE
  • Wählen Sie die WEA-Response-Datei im Drop-Down-Menü
  • Setzen Sie den Haken bei Berechne bei Ermüdungslasten
  • Klicken Sie Bearbeiten, ändern Sie ggf. die Einstellungen und klicken Berechnen
  • Prüfen Sie die Ergebnisse der Ermüdungslasten für die am stärksten belasteten Komponenten für jede WEA-Position
  • Klicken Sie OK, prüfen die Berichte und exportieren bei Bedarf die Ergebnisse über Ergebnis- in-Datei

5.2 SITE COMPLIANCE

5.2.1 Einstellungen der SITE COMPLIANCE-Berechnung

Bevor Sie mit der SITE COMPLIANCE-Berechnung beginnen, stellen Sie sicher, dass Sie eine lizenzierte Version des SITE COMPLIANCE-Moduls besitzen (grüner Pfeil vor Modulname) und dass Ihr Projekt in windPRO die folgenden Daten / Lizenzen beinhaltet:

1 Ein Layout mit WEA-Objekten
2 Ein digitales Höhenmodell (Linien- oder Höhenraster-Objekt)
3A Ein Messmast mit verschiedenen Messhöhen (alle sorgfältig geprüft und auf eine Anzahl von vollen Jahren bereinigt)
und / oder
3B Ein Terraindatenobjekt (mit Windstatistik)
  • Eine gültige WAsP Lizenz
  • Eine gültige WEng 3.0 Lizenz
und / oder
3C Eine gültige WAsP 11-Lizenz
WAsP-CFD-Ergebnisdatei(en)

Die folgenden Abschnitte beschreiben die wichtigsten Schritte zu den Einstellungen einer SITE COMPLIANCE-Berechnung Register für Register. Bitte beachten Sie, dass nicht jedes Register in jedem Berechnungsmodus verfügbar ist.  

5.2.1.1 Hauptteil

Im Register Hauptteil des SITE COMPLIANCE-Moduls sind die Grundeinstellungen des zu verwendenden Modus zu treffen unter Standort- und Layoutcheck mit. Die passende Auswahl hängt von den verfügbaren Messmastdaten und Lizenzen für die Strömungsmodelle WAsP, WEng und WAsP-CFD ab.


BILD



Abb. 2. Grundeinstellungen im SITE COMPLIANCE-Modul

Die Strömungsmodelle mit gültigen Lizenzen sollten ausgewählt werden. Bitte beachten Sie, dass als Grundvoraussetzung für die Verwendung von WEng eine Installation der Software-Version 3.1 oder neuer mit gültiger Lizenz vorhanden sein muss. Die Gültigkeit der Lizenz wird regelmäßig online überprüft.

Wenn keine individuelle Auslegungsklasse der WEA in den einzelnen Objektdaten angegeben wurde, kann die Option Auslegungsklasse für alle WEA angewendet und eine passende Klasse definiert werden. Die Grundparameter jeder Auslegungsklasse sind in der Tabelle unter der Auswahl aufgeführt. Wenn Klasse S ausgewählt wird, werden die leeren Felder für Klasse S in der Übersichtstabelle editierbar und müssen mit dem passenden Eintrag gefüllt werden.

5.2.1.2 Messmastdaten

Im Register Messmasten müssen zunächst die relevanten Standortmasten ausgewählt werden. Anschließend erweitert sich die Ansicht und die Haupthöhe wird ausgewählt. Auf dieser Höhe basieren alle IEC- und WAsP-Berechnungen, wenn der Modus Nur Messmastdaten gewählt ist. Wenn Datensätze in mehreren Messhöhen vorliegen, müssen die Höhen ausgewählt werden, die zusätzlich zur Haupthöhe zur Shear-Berechnung (Veränderung der Winddaten über die Höhe) verwendet werden sollen.

Bitte beachten Sie rot markierte Felder wie Messintervall, Dauer oder Verfügbarkeit, hier könnten Probleme auftreten, da die IEC-Richtlinie 10-minütige Messintervalle für Standortmessungen fordert und diese Daten nicht jahreszeitlich gewichtet sein dürfen, d.h. es dürfen nur volle Jahre der Messung verwendet werden.

Wenn vorhanden, können hier auch die Langzeit-Referenz-Daten gewählt werden. Hierfür muss nach dem Anklicken der Zweck auf Langzeit-Referenz gesetzt werden. Zudem ist noch ein dritter Zweck einstellbar: Klimadaten wird genutzt, wenn am Standortmast keine Temperaturmessung durchgeführt worden ist.


BILD


5.2.1.3 Layout (WEA)

Im Register WEA werden die relevanten WEA ausgewählt. Im SITE COMPLIANCE-Modul werden die IEC-Prüfungen nur für Neue WEA (rotes Kartensymbol) durchgeführt. Existierende WEA (blaues Kartensymbol) werden, wenn sie ausgewählt wurden, in den relevanten Berechnungen berücksichtigt (z.B. Nachlaufeffekte), es werden jedoch keine individuellen Ergebnisse angezeigt. Wählen Sie den / die Layer mit Neuen WEA und passen im unteren Registerbereich die entsprechende Auswahl an, wenn nicht alle WEA verwendet werden sollen.


Die Verwendung von WEA in schallreduziertem Modus sollte vermieden werden, da die Windgeschwindigkeit bei Nennleistung aus der Leistungskennlinie entnommen wird und Teil der IEC-Hauptprüfungen ist. Dies könnte bei Leistungskennlinien in reduziertem Modus ungünstig sein.


BILD

Abb. 4. Register WEA, in dem die relevanten WEA (Neue WEA) gewählt werden


5.2.1.4 Mast – WEA

Dieses Register ist nur in Modus I und II verfügbar, wenn eine Windmessung vorliegt. Hier erfolgt die Zuordnung welcher Windmessmast für welche WEA genutzt werden soll. Die Standardeinstellung wählt für jede WEA den nächstgelegenen Messmast. Dennoch ist eine manuelle Zuordnung möglich, wenn mehrere Messmasten vorhanden sind.


BILD


Abb. 5. Register Mast-WEA - für jede WEA sollte der geeignete Mast ausgewählt werden

Ganz unten auf der Seite ist einstellbar, ob die Beschreibung oder die Anwenderkennung der WEA in den Tabellen, Grafiken und Berichten angezeigt werden soll.

5.2.1.5 Langzeitkorrektur

Dieses Register ist nur verfügbar in Modus I und II und wenn im Hauptteil bei WAsP Messmastdaten angehakt ist. Es sollte überprüft werden, ob der Messzeitraum langzeit-repräsentativ ist. Wenn nicht, ist eine Langzeitkorrektur sinnvoll und kann direkt in SITE COMPLIANCE durchgeführt werden.

Dieses Register bietet eine einfache Alternative zur üblichen Erstellung von langzeitkorrigierten Windstatistiken für jeden Mast via MCP und Nutzung der WAsP-Option langzeitkorrigierte Windstatistik im Hauptteil.

Die Langzeitkorrektur in SITE COMPLIANCE unterscheidet sich von der Methodik des MCP-Moduls durch einen Windgeschwindigkeits-Index, während MCP auf einem Windenergie-Index basiert. Dies ist darin begründet, dass der Fokus von SITE COMPLIANCE auf den Lasten und nicht auf der Energieberechnung liegt.

Wählen Sie Keine Korrektur – Daten sind repräsentativ, werden keine weiteren Eingaben benötigt. Wenn im Register Messmasten eine Langzeit-Referenz gewählt wurde, und diese mit den Daten der Standortmasten gut korreliert, kann die Windgeschwindigkeits-Indexkorrektur gewählt werden. Wird diese gewählt, wird das Feld Korrekturen berechnen aktiviert und muss angeklickt werden. Prüfen Sie das Ergebnis für jeden vorhandenen Standortmast in Bezug auf Index und (Korrelations-Koeffizient). Die Grafik wird für die ausgewählten Messreihen dargestellt.


BILD


Abb. 6. Register Langzeitkorrektur

Ein Index von 100% bedeutet, dass der Messzeitraum langzeit-repräsentativ ist. Bei Werten darüber oder darunter sollte die am Standort gemessene mittlere Windgeschwindigkeit mit dem entsprechenden Wert (Kehrwert des Index) korrigiert werden, um das langjährige Windklima darzustellen.

Der Index wird aus den Langzeit-Referenzdaten berechnet. Hierfür wird das Verhältnis der mittleren Windgeschwindigkeit des überlappenden Messzeitraumes zur mittleren Windgeschwindigkeit des kompletten Messzeitraumes gebildet. Die Korrelations-Koeffizienten basieren auf den mittleren Windgeschwindigkeiten der überlappenden Messperiode, welche auch in der Grafik dargestellt sind. 


5.2.1.6 WAsP

Das Register WAsP ist verfügbar, wenn im Hauptteil WAsP gewählt wurde. Die Auswahlmöglichkeiten auf diesem Register hängen vom verwendeten WAsP-Modus ab: Im Modus Messmastdaten muss ein Terraindatenobjekt (Zweck: STATGEN) gewählt werden, um die Gelände- und die Rauigkeitsdaten an WAsP übermitteln zu können (s.u.).


BILD

Abb. 7. Register WAsP im Modus Messmastdaten

Bei Verwendung von SITE COMPLIANCE im WAsP-Modus Windstatistik mit Langzeitbezug muss für jeden Messmasten ein Terraindatenobjekt (Zweck: Energieberechnung mit WAsP) gewählt werden. Bitte stellen Sie sicher, dass in den verwendeten Terraindatenobjekten die jeweils passende Windstatistik mit Langzeitbezug für den betreffenden Messmast ausgewählt wurde.


BILD

Abb. 8. Register WAsP im Modus Windstatistik mit Langzeitbezug


Im Modus Keine Messmastdaten wird im Register WAsP die Eingabe der zu verwendenden Terraindatenobjekte benötigt. Für jede WEA wird das jeweils nächstgelegene Terraindatenobjekt genutzt.



BILD

Abb. 9. Register WAsP im Modus Keine Messmastdaten


Nach der Wahl des / der Terraindatenobjekte(s) startet die WAsP-Berechnung über das grüne Feld WAsP-Berechnung durchführen. Die WAsP-Parameter können über das obere Feld angepasst werden.



BILD

Abb. 10. Register WAsP – Berechnung starten oder WAsP-Parameter anpassen



BILD BILD

Abb. 11. Register WAsP vor und nach erfolgreicher Berechnung


Wenn die WAsP-Berechnung abgeschlossen ist, erscheint das Feld wieder grau und die rote Markierung im Registerkopf wird durch einen grünen Haken ersetzt. Wurde für Messmasten oder WEA eine Verdrängungshöhe angegeben, wird diese immer in der WAsP-Berechnung benutzt.

5.2.1.7 WEng

Das SITE COMPLIANCE-Modul bietet eine bedienerfreundliche Einbindung von WAsP Engineering (WEng). Durch die komplett externe Installation und Lizensierung von WEng, wird windPRO zur grafischen Benutzeroberfläche des Strömungsmodells und ermöglicht eine deutliche Vereinfachung der Einstellungen und Verwendung von WEng. Im Gegensatz zu WAsP ist WEng ein rasterbasiertes Model, welches die Strömungsparameter (außer Turbulenz) für jeden Rasterpunkt einer zuvor definierbaren, rechteckigen Berechnungsfläche modelliert.

Zuerst muss ein Terraindatenobjekt (Zweck WAsP oder STATGEN) ausgewählt werden, um die Gelände- und Rauigkeitsdaten an WEng zu übermitteln. Anschließend muss ein Bereich um alle Masten / WEA angegeben werden, der die Ausdehnung der Berechnungsfläche definiert. Voreingestellt ist ein Wert von 5 km, welcher einen Kompromiss zwischen Genauigkeit und Berechnungsdauer bietet. Wenn besondere Rauigkeitswechsel oder starke Veränderungen der Landschaft etwas weiter als 5 km entfernt vorliegen, sollte der Berechnungsbereich entsprechend ausgedehnt werden, um diese zu erfassen.

Die voreingestellte Rasterweite liegt bei 50 m. Diese sollte normalerweise ausreichen und nur bei starken Terrainveränderungen, wie z.B. einem schmalen Felsrücken, sollte eine feinere Auflösung gewählt werden.

Wird der Bereich oder die Rasterweite verändert, wird die Anzahl der Gitterpunkte automatisch angepasst. Die Berechnungszeit von WEng wird optimiert, wenn die Anzahl der Gitterpunkte gerade unter 170, 340, 680…usw. bleibt. Dies liegt an der Berechnungsmethodik von WEng.

Die derzeitige Version des SITE COMPLIANCE-Moduls unterstützt keine Verwendung von Hindernissen in der WEng-Modellierung, da diese bei den heute üblichen Nabenhöhen nicht relevant sind.


BILD

Abb. 12. Register WEng


BILD BILD

Abb. 13. Register WEng vor und nach erfolgreicher Berechnung


Falls WEng während einer SITE COMPLIANCE-Berechnung einen Fehler verursacht, werden die verwendeten Berechnungseinstellungen der WEng-Berechnung (Windrichtung und Berechnungsfläche) automatisch in eine WEng-Projektdatei geladen. Die Datei heißt „WEngCrashProject.wep“ und liegt im windPRO-Projektordner. Diese Datei kann direkt in WEng geöffnet werden und wenn der Fehler dort auch auftritt, kann die Datei zur weiteren Prüfung zum WAsP/WEng-Support-Team von DTU übermittelt werden.


Erweiterte WEng-Einstellungen Bevor die WEng-Berechnung gestartet wird, können die Erweiterten Optionen geprüft und angepasst werden.



BILD

Abb. 14. Register WEng, erweiterte Einstellungen


Diese Einstellungsmöglichkeiten zeigen, wie die Strömungsmodellierung in WEng ausgeführt wird. Über den reduzierten geostrophischen Wind können Windgeschwindigkeit, Höhe, Anzahl der Sektoren und die Rauigkeitslänge angepasst werden.

Da WEng ein lineares Modell ist, basieren die Ergebnisse der Strömungsmodellierung, Speed-Up und Turbulenzintensität nicht auf diesen Einstellungen. Nur im besonderen Fall von Offshore- oder Semi-Offshore-Bedingungen ist besondere Vorsicht geboten, da die Linearität aufgrund der zunehmenden Rauigkeit (Wellengang) mit höheren Windgeschwindigkeiten nicht mehr gegeben ist. In diesen besonderen Fällen ist es ratsam WEng anzuwenden, SITE COMPLIANCE zu schließen und die Ergebnisse von WEng mit Rechtsklick auf die Berechnung und Result-to-file zu exportieren. Die Windgeschwindigkeiten, die so für jede WEA prognostiziert werden, sollten in etwa den Extremwindgeschwindigkeiten der WEA entsprechen. Sind die Ergebnisse zu hoch oder zu niedrig, kann die geostrophische Windgeschwindigkeit in den erweiterten WEng-Einstellungen angepasst werden, um eine bessere Modellierung der Extremwindbedingungen zu erreichen.

Bei Turbulenzberechnung können Sie auswählen, ob keine Turbulenzberechnung durchgeführt werden soll, bzw. das Modell Scanlan oder Kaimal genutzt wird. Voreingestellt und empfohlen ist die Turbulenzberechnung mit Hilfe des Kaimal-Modells.

Wenn eine Verdrängungshöhe für einen Mast im METEO-Objekt oder für ein WEA-Objekt angegeben ist, wird diese immer in der WEng-Berechnung berücksichtigt. Üblicherweise werden dabei die Windgeschwindigkeiten verringert, während Turbulenz und Windscherung normal ansteigen.


5.2.1.8 WAsP-CFD

Seit windPRO 3.0 können in SITE COMPLIANCE die Ergebnisse aus WAsP-CFD genutzt werden. Voraussetzung dafür ist eine installierte und lizensierte WAsP 11-Version, und dass eine WAsP-CFD-Berechnung für den Standort durchgeführt wurde. Die verwendeten CFD-Kacheln müssen dabei alle Mast- und WEA-Positionen enthalten.

Zum Einladen der CFD-Ergebnisse klicken Sie auf Aus Datei(en) oder Aus Berechnung und wählen aus dem erscheinenden Fenster die benötigten *.cfdres-Datei(en). Diese befinden sich üblicherweise im Projekt-Ordner in einem Unterordner namens OnlineCFDResults.


BILD

Abb. 15. Auswahl der WAsP-CFD-Ergebnisdateien. Links die Auswahl einzelner Dateien, rechts die Auswahl aus den Berechnungen.


BILD

Abb. 16. Register WAsP-CFD (bei direkter Nutzung der Messmastdaten)

Wenn mit langzeitkorrigierten Windstatistiken oder ohne Messmastdaten gerechnet wird, muss auch die entsprechende Windstatistik gewählt werden.


BILD

Abb. 17. Register WAsP-CFD bei Nutzung langzeitkorrigierter Windstatistiken

Nach Auswahl der passenden CFD-Ergebnisdateien und - wenn nötig - der Windstatistiken, wird die Berechnung gestartet durch Klick auf den grünen Button WAsP-Berechnung durchführen. Die Berechnung kann einige Minuten dauern. Über den WAsP-Aufruf werden die WAsP-CFD-Ergebnisse mit den Windmessdaten bzw. den Windstatistiken kombiniert, um an jeder WEA-Position die Weibull-Verteilung und Häufigkeit für jeden Sektor auf Nabenhöhe und optional +/- ½ Nabenhöhe zu ermitteln. Anschließend werden die zusätzlich benötigten Parameter wie Neigung der Anströmung, Speed-Up und Verdrehung direkt aus den CFD-Rohdaten extrahiert.


BILD BILD

Abb. 18. Register WAsP-CFD vor und nach erfolgreicher Berechnung


Erweiterte Einstellungen

Über die Auswahl Erweiterte Einstellungen (CFD-Roh-Ergebnisse) kann der Umgang mit den CFD-Rohdaten in Bezug auf die Glättung geändert werden. Jeder der 36 Richtungssektoren wird als eigene numerische Simulation gerechnet. Werden die Ergebnisse aller Sektoren verglichen, fallen starke Variationen der einzelnen Parameter auf („numerical noise“). Um robustere Ergebnisse, z.B. bei den Ausbreitungsmodellen für die Extremwindgeschwindigkeit zu erhalten, wird ein Glättungsfilter eingesetzt. Als Standard wird die Glättung von [0,25; 0,5; 0,25] auf die Rohdaten der CFD-Parameter Verdrehung, Turbulenzintensität und Speed-Up angewendet. Das heißt, dass in jedem Richtungssektor das Roh-Ergebnis ersetzt wird durch den gewichteten Mittelwert des ursprünglichen Wertes und der Werte der benachbarten Simulationen entsprechend der gewählten Gewichtung. In WAsP wird eine Glättung von [1/3; 1/3; 1/3] genutzt, um die Weibullverteilungen von 12 Sektoren von je 30° zu berechnen. Die Verwendung von [0; 1; 0] entspricht keiner Glättung.


BILD

Abb. 19. Register WAsP-CFD: Erweiterte Einstellungen (CFD-Rohergebnisse)



5.2.2 IEC-Prüfungen - Hauptprüfungen

Wenn alle Einstellungen abgeschlossen sind und die Berechnungen der gewählten Strömungsmodelle durchgeführt wurden, können die Prüfungen nach IEC 61400-1 ed. 3 (2010) auf dem Register IEC-Prüfungen beginnen. Hierfür markieren Sie die benötigten Felder in der Spalte Calc. Empfohlen wird die Durchführung aller Hauptprüfungen. Sollte etwas aus den vorangegangen Einstellungen fehlen oder unvollständig sein, wird dieses durch Benötigt: … in der Spalte Berechnen der betreffenden Prüfung gekennzeichnet.

Für einige Prüfungen wird Benötigt: … angezeigt bis andere Prüfungen durchgeführt wurden. Effektive Turbulenz benötigt zur Berechnung das Ergebnis der Kalkulation Komplexität Gelände. Wenn keine WEng-Ergebnisse verfügbar sind, benötigt die Berechnung Neigung der Anströmung ebenfalls zuvor die Komplexität Gelände.

Die Ergebnislegende erläutert die optische Bewertung der Berechnungsergebnisse.


BILD

Abb. 20. Die Ergebnislegende des Registers Berechnungen

Nach Abschluss einer jeden Prüfung wird als Gesamtergebnis des Windparks in der Spalte Ergebnis die Bewertung der ungünstigsten WEA farblich angezeigt. Mit Klick auf Bearb. werden im Unterregister Ergebnis (Tabelle) bzw. Ergebnis (Grafik) die Resultate jeder einzelnen WEA angezeigt.


BILD

Abb. 21. Register IEC-Prüfungen mit den markierten Hauptprüfungen vor der Berechnung

Um die Berechnung der Hauptprüfungen zu starten, klicken Sie jeweils auf das Feld Bearb. Die erste Berechnung sollte dabei Komplexität Gelände sein.


BILD RAHMEN Achtung


5.2.2.1 Komplexität Gelände

Beschreibung und Grenzen Die IEC-Richtlinie beschreibt ausgeklügelte Details für die Prüfung der topographischen Komplexität. In der Nähe jeder WEA wird die die Geländeneigung und -veränderlichkeit geprüft. Eine Anzahl von Ebenen in Form von Ringen und „Tortenstücken“ um die WEA müssen an das Gelände und die -neigung angenähert werden und die Veränderungen jeder Ebene müssen evaluiert werden. Im Folgenden werden die Anforderungen näher beschrieben.

Die Prüfung der topographischen Komplexität des Geländes ist kein alleiniges Kriterium, das ein Projekt zum Scheitern verurteilt. Es unterstützt vielmehr dabei komplexe Standorte zu erkennen und die gemessene Turbulenz mit einem Korrekturfaktor für die Turbulenzstruktur zu korrigieren. Diese Korrektur ist eine Kompensation dafür, dass Schalensternanemometer nur die horizontale Komponente der Turbulenz erfassen, im komplexen Gelände jedoch bedeutende Anteile der turbulenten kinetischen Energie in der vertikalen Komponente enthalten sein können.

Einstellungen, Berechnung und Ergebnis Die Einstellungen und Durchführung der Berechnung für die IEC Komplexitätsprüfung sind sehr einfach in SITE COMPLIANCE. Das Modul nutzt das aktive digitale Höhenmodell (DHM), welches im Projekt definiert ist. Das Modell kann sowohl als Liniendatei eines Linienobjektes als auch als Höheraster definiert sein.



BILD

Abb. 22. Einstellungen und Berechnung der Prüfung Komplexität Gelände

Die einzig veränderbare Einstellung ist hier die Rasterweite, welche die Auflösung eines passenden quadratischen Höhenrasters definiert, das zu dem Höhenmodell des Geländes und den Annäherungen der Ebenen passt. Die voreingestellte Auflösung entspricht der Anforderung der IEC, die eine Auflösung von höchstens 100 m und 1,5xNH verlangt. Dennoch ist es aufgrund der verfügbaren Höhendaten häufig nicht möglich eine feinere Auflösung zu verwenden.

Durch Klicken auf Berechnen startet die Prüfung der Gelände-Komplexität. Die Kalkulation dauert etwas länger, falls die Triangulierung vorher noch nicht berechnet wurde. Nach Durchführung der Berechnung erscheinen mehrere neue Ergebnisregister. Automatisch springt das Modul auf das Register Ergebnis (Grafik), das eine Übersicht des Hauptergebnisses zeigt. Auf diesem Register wird der sogenannte Komplexitäts-Index ic laut IEC-Richtlinie für jede WEA-Position dargestellt. Ist der Index 1, so ist eine Anlagen-Position komplex, ist der Index 0, ist sie nicht komplex. Liegt der Index zwischen 0 und 1, deutet das auf einen teilweise komplexen Standort hin.

Im Kasten oben rechts neben dem Berechnungsnamen erscheint ein grünes Quadrat. Dies bedeutet, dass das Ergebnis OK ist und keine Probleme oder Risiken in Bezug auf die Komplexität des Geländes zu erwarten sind.


BILD

Abb. 23. Register Ergebnis (Grafik) zeigt eine einfache Übersicht der Resultate der Gelände-Komplexität

SITE COMPLIANCE ermöglicht dem Benutzer durch Neu hinzuf. weitere Berechnungen mit anderen Einstellungen (in diesem Fall Rasterweite) hinzuzufügen. Dies geschieht durch Klicken auf Neu hinzuf., Auswahl der gewünschten Einstellung und Klicken auf die grüne Berechnen-Schaltfläche. Auf diese Weise können zusätzliche Berechnungen durchgeführt werden, um zu prüfen, wie stark das Ergebnis durch die jeweiligen Annahmen beeinflusst ist. Empfehlenswert ist es, den Namen jeder Berechnung gleich auf dem Register Einstellungen anzupassen – dieses kann jedoch auch nach der Berechnung erfolgen. Die Einstellungen- und Ergebnis-Register einer Berechnung werden durch Klicken auf die jeweilige Kalkulation in der Liste angezeigt. Die gezeigte Berechnung ist blau unterlegt.

Bevor die Prüfung durch Klicken auf die OK-Schaltfläche abgeschlossen wird, muss eine der durchgeführten Berechnungen als endgültiges Ergebnis Ausgewählt werden. Abb. 24. Links: Die Liste der Berechnungen mit mehreren Berechnungseinstellungen und der mittleren als Ausgewählt (markiert) aber der unteren Berechnung als Dargestellt (blau unterlegt). Rechts: Die „Anzeigelegende“, die die dargestellten Berechnungen aus der Liste definiert.

Das Register Ergebnis (Tabelle) fasst die Ergebnisse des Geländekomplexität-Index‘ für jede WEA zusammen. Eine Farbkodierung kennzeichnet den Komplexitätsindex grün, wenn alle 0 (d.h. OK) sind und gelb (d.h. ACHTUNG), wenn ein Index 0 überschreitet.

Werden die Ergebnisse einer WEA durch Klicken auf “+” ausgeklappt, werden die drei Unterstufen „R=5xNH“, „R=10xNH“ und „R=20xNH“ dargestellt. Die Erweiterung einer dieser Stufen zeigt die Ergebnisse der Anpassung mit dem entsprechenden Radius in Bezug auf Neigung und deren Richtung sowie die verfügbare Energie, die im Richtungssektor dieser Ebenen-Anpassung vorhanden ist. Im Folgenden werden weitere Details zur Durchführung der Anpassung gezeigt.