Handbuch STATGEN

From Wiki-WindPRO
Revision as of 16:10, 2 May 2016 by Robin (talk | contribs)
Jump to navigation Jump to search



Mit STATGEN werden regionale Windstatistiken (WAsP-Format) aus Winddaten und Terraindaten erzeugt.

STATGEN geht dabei davon aus, dass die verwendeten Winddaten langzeit-repräsentativ sind. Ist dies nicht der Fall, sollte die regionale Windstatistik anstatt in STATGEN im Rahmen einer Langzeitkorrektur mit MCP erstellt werden.

Die Winddaten müssen in Form eines METEO-Objekts vorliegen.

Die Terraindaten können vorliegen:

Zu Allgemeinen Informationen zum Start einer Berechnung siehe Berechnungen - Grundlagen.

Starten Sie die STATGEN-Berechnung im Menüband Klima:


Register Hauptteil

Auf dem Hauptregister wird die Quelle für Terraineinfluss gewählt.

  • Terraindatenobjekt (orange, Zweck Windstatistik-Erzeugung) verwendet Orographie, Rauigkeit und Hindernisse so, wie in einem Terraindatenobjekt definiert. Diese Option sollte im mittelkomplexen Gelände mit langzeitkorrigierten Messdaten verwendet werden.
  • WAsP-CFD-Ergebnisdatei (*.CFDRES) ersetzt die Terraindaten durch vorab mit WAsP-CFD berechnete Speed-ups und Richtungswechsel (die wiederum anhand eines regulären Geländemodells mit Orographie und Rauigkeiten berechnet wurden). Diese Option ist in der Regel im komplexeren Gelände sinnvoll, das durch eine reguläre WAsP-Berechnung nicht ausreichend gut modelliert werden kann.
  • Meso-Terrain aus dem METEO-Objekt verwenden sollte gewählt werden, wenn die Winddatenquelle ein METEO-Objekt mit Mesoskalen-Daten ist. Beim Download dieser Daten wird automatisch das Geländemodell des Mesoskalen-Modells mit übertragen und nur dieses sollte für die Erzeugung einer Windstatistik aus diesen Meso-Daten verwendet werden. Bitte beachten Sie, dass die Original-Position des METEO-Objekts beibehalten werden muss, da die Meso-Windverhältnisse nur für diese Position gelten.


Register STATGEN

Auf dem Register STATGEN finden sich die folgenden Eingaben:

Terraindaten

Auswahl der Terraindaten entsprechend der Auswahl auf dem ersten Register. Oben ist die Auswahl für die Option Terraindatenobjekt dargestellt. Beachten Sie, dass nur Terraindatenobjekte angezeigt werden, deren Zweck mit "Scaler, Windstatistik-Erzeugung" angegeben ist.

Ist auf dem Register Hauptteil die Option WAsP-CFD-Ergebnisdatei ausgewählt, so erwartet STATGEN statt eines Terraindatenobjekts die Eingabe einer CFD-Ergebnisdatei (Kachel), die die Position der Winddaten (s.u.) abdeckt. Die Winddaten sollen in der Mitte oder im zentralen Bereich der CFD-Kachel liegen und möglichst in 36 Sektoren unterteilt sein.

Der Abschnitt Terraindaten entfällt, wenn auf dem Register Hauptteil die Option Meso-Terrain aus dem METEO-Objekt verwenden ausgewählt ist.


Winddaten

Es werden alle Zeitreihen angezeigt, die den ausgewählten Kriterien entsprechen. Wofür eine Zeitreihe zur Verfügung steht, wird im METEO-Objekt auf dem Register Zweck definiert. Es kann nur eine Zeitreihe gewählt werden. Wenn es sich um Daten eines Messmasts handelt, soll in der Regel die höchste Höhe ausgewählt werden, für die eine vollständige Zeitreihe für Windgeschwindigkeit und -richtung vorliegt. Die Anzahl der Windrichtungssektoren wird aus der gewählten Sektorenzahl im METEO-Objekt, Register Daten|Häufigkeitstabelle, übernommen. Basiert die zu erzeugende Windstatistik auf einer WAsP-CFD-Ergebnisdatei (*.CFDRES), sollten im METEO-Objekt 36 Sektoren verwendet werden.

Intervall: Dies erlaubt die Auswahl einer spezifischen Periode. So können beispielsweise Messungen auf vollständige Jahre trunkiert werden oder es können lediglich Mesoskalen-Daten der letzten 10 oder 20 Jahre verwendet werden.

Wenn auf dem Register Hauptteil die Option Meso-Terrain aus dem METEO-Objekt verwenden ausgewählt ist, werden nur Zeitreihen aus EmdConWx- oder EMD-WRF-METEO-Objekten angezeigt. Hier sollte die Höhe der Daten etwa auf Nabenhöhe der geplanten WEA liegen. Zusätzlich steht eine Auswahl der maximalen oder minimalen Rauigkeit zur Verfügung:



Dies bezieht sich auf die Rauigkeiten für das Sommer- und das Winterhalbjahr, die einer Mesoskalen-Berechnung zugrunde gelegt werden. Die hohen (Max) Rauigkeiten führen in der Regel zu zu optimistischen Ergebnissen, weshalb standardmäßig die niedrigen (Min) Rauigkeiten ausgewählt sind.


Speichern als: Wenn die Windstatistik ausschließlich in windPRO verwendet wird, sollte das windPRO-Format (WWS) gewählt werden, da dieses neben der eigentlichen Windstatistik Metadaten speichern kann, die dabei helfen können, die Windstatistik später korrekt zu verwenden, wie z.B. modifizierte WAsP-Parameter oder Informationen zur Messung (siehe STATGEN-ErgebnisseWindstatistik-Info). Das WAsP-Format (LIB) ist hierzu nicht in der Lage und wird nicht empfohlen. Soll die Windstatistik allerdings auch direkt in WAsP verwendet werden (ohne windPRO), so wird dieses Format benötigt.

Name, Land, Quelle, Dateiname, Anmerkungen sind Kriterien, die später die Identifikation und Nachvollziehbarkeit der Windstatistik erleichtern.

WAsP-Parameter bearbeiten: Siehe hierzu Hauptartikel WAsP-Parameter.

Register Verdrängungshöhe

  • Keine Verdrängungshöhen: Die gewählte Messhöhe wird verwendet, auch wenn im METEO-Objekt eine Verdrängungshöhe angegeben ist
  • Verdrängungshöhen von Objekten: Die Messhöhen des Masts werden, wenn im METEO-Objekt eine Verdrängungshöhe angegeben ist, um den entsprechenden Betrag reduziert
  • Verdrängungshöhen-Rechner: Sektorweise Ermittlung von Verdrängungshöhen entsprechend dem ausgewählten Verdrängungshöhen-Profil. Objektspezifische Verdrängungshöhen werden ignoriert.

Weitere Informationen


Start der STATGEN-Berechnung

Starten Sie die Berechnung mit Ok



STATGEN-Ergebnisse

Das eigentliche Ergebnis einer STATGEN-Berechnung ist eine regionale Windstatistik, die als Datei im Format *.WWS (alternativ *.LIB) abgelegt wird. Zusätzlich werden Berichte erstellt, die zur Dokumentation der Windstatistik-Erstellung dienen. Zur Darstellung der Ergebnisse siehe Berechnungen - Grundlagen.

Es sind bei der STATGEN-Berechnung 5 Teilergebnisse verfügbar:



Überblick: Ein Überblick über bei der Windstatistik-Erzeugung modifizierte WAsP-Parameter sowie über die Windbedingungen der regionalen Windstatistik. Im unteren Teil wird das Energieniveau der erzeugten Windstatistik im Vergleich zu den räumlich nächstgelegenen regionalen Windstatistiken angezeigt.



Terrain: Dokumentiert die Pfadnamen der Orographie- und Rauigkeitsdateien sowie deren Randkoordinaten und Abmessungen. Bei Verwendung von Rauigkeitsrosen (nur bis WAsP 10.0) werden diese dargestellt.

Analyse der Windverhältnisse: Stellt die Weibull-Verteilung, die von WAsP für die Berechnungsposition ermittelt wurde, in grafischer und tabellarischer Form dar.

Windstatistik-Info: Zeigt die Metadaten der verwendeten regionalen Windstatistik. Je nach Datenquelle und WAsP-Version, mit der die Windstatistik erzeugt wurde, können die angezeigten Informationen mehr oder weniger umfangreich sein.



Karte: Übersichtskarte der Umgebung der regionalen Windstatistik. Eventuell vorhandene WEA-Layouts werden nicht dargestellt, da sie keinen Einfluss auf die STATGEN-Berechnung haben.



Regionale Windstatistiken

In der Vergangenheit wurde die Mehrzahl der Ertragsprognosen auf Basis von Regionalen Windstatistiken durchgeführt. Obgleich der alternative Berechnungsweg mit Scaler bzw. Zeitreihen viele Vorteile hat, wird der Weg über regionale Windstatistiken von windPRO weiterhin unterstützt.

Regionale Windstatistiken bilden die Grundlage für Berechnungen mit den Modellen ATLAS, WAsP interface und WAsP-CFD. Eine regionale Windstatistik kann auf Basis einer Windmessung oder von Mesoskalendaten (EMD-WRF (DE oder EmdConWx) mit dem Modulen STATGEN oder MCP selbst erstellt werden. Dies setzt voraus, dass eine gültige Lizenz für das Strömungsmodell WAsP vorliegt.

Auch Drittanbieter vertreiben regionale Windstatistiken für verschiedene Länder (z.B. Deutschland: DWD). Seit 2015 existiert mit dem Global Wind Atlas[1] eine weltweite kostenlose Datenquelle für regionale Windstatistiken, die via Downscaling aus Reanalyse-Daten erstellt wurden.

Wenn regionale Windstatistiken nicht auf Basis einer Standortmessung erstellt wurden, wird in aller Regel eine nachträgliche Skalierung der regionalen Windstatistik anhand von lokalen Daten (z.B. WEA-Erträgen) vonnöten sein, bevor Ergebnisse mit ausreichender Unsicherheit berechnet werden können.


Inhalt einer regionalen Windstatistik

Eine regionale Windstatistik ist eine multidimensionale Matrix von Windgeschwindigkeitsverteilungen mit den folgenden Dimensionen:

  • Höhe über Grund (Standardwerte: 10, 25, 50, 100, 200 m)
  • Windrichtung (Standardwerte: 12 Sektoren zu je 30°)
  • Rauigkeit (Standardwerte: Klassen 0 – 4, entsprechend Längen 0,0002; 0,03; 0,1; 0,4; 1,5)

In jeder Dimension beschreibt eine Weibullverteilung, repräsentiert durch ihre A- und k-Parameter, die Verteilung der Windgeschwindigkeiten. Für jede Rauigkeit ist eine eigene Verteilung der Windrichtungen auf die Richtungssektoren hinterlegt.

Die Daten stellen keine tatsächlichen Windbedingungen an der entsprechenden Position dar, sondern idealisierte Windbedingungen unter der Annahme, dass das Gelände eben und hindernisfrei und die Rauigkeit einheitlich ist.

In neueren WAsP-Versionen werden regionale Windstatistiken auch "Generalized Wind Climate" (GWC) genannt.

Regionale Windstatistiken treten in drei Datenformaten auf:

  • *.lib, das älteste Format, das bereits mit der ersten WAsP-Version 1993 eingeführt wurde. Es ist ein einfach strukturiertes Textformat, das neben den oben genannten Informationen keine weiteren Daten enthalten kann.
  • *.wws (windPRO Wind Statistic), das zur Verwendung in windPRO aufgrund der Beschränkungen des .lib-Formates eingeführt wurde und zusätzliche Informationen zu Rahmenbedingungen der Erstellung (z.B. verwendete WAsP-Parameter, Koordinaten, Länge und Zeitraum der zugrunde liegenden Zeitreihe, Methode der Langzeitkorrektur) enthalten kann.
  • *.gwc, die modernisierte Version des .lib-Formats, die in WAsP seit Version 11 verwendet wird. Ebenso wie .wws kann das .gwc-Format zusätzliche Informationen enthalten, beschränkt sich dabei aber auf für das WAsP-Programm relevante Daten wie die verwendeten WAsP-Parameter.

windPRO kann Dateien im Format .lib und .wws erzeugen und alle drei Formate verwenden.


Erstellen einer regionalen Windstatistik

Eine regionale Windstatistik wird erstellt, indem die tatsächlichen Geländebedingungen an einem Messstandort aus den gemessenen Daten herausgerechnet werden und gegen generalisierte Geländebedingungen ersetzt werden. Dabei wird stets nur von einer gemessenen Höhe ausgegangen, die Vertikalextrapolation erfolgt durch das Modell zum Teil anhand der Geländerauigkeit, zum Teil anhand des Stabilitätsmodells. Letzteres kann durch Adaption der sogenannten Heatflux-Parameter (Bestandteil des WAsP-Modells) beeinflusst werden, was in der Regel in sehr warmen oder sehr kalten Klimata notwendig ist.

Die Windstatistik-Erstellung geschieht in windPRO mithilfe der Module STATGEN (wenn die Messdaten bereits langzeit-repräsentativ sind) oder MCP (wenn die Messdaten zuerst noch langzeitkorrigiert werden müssen). Diese Module greifen intern auf die WAsP-Software zurück, die für die Strömungsmodellierung (das Herausrechnen der Gelände- und Stabilitätseinflüsse) zuständig ist.


Für die Berechnung einer regionalen Windstatistik wird benötigt:

  • Ein METEO-Objekt mit sektorweisen Weibullverteilungen für eine Messhöhe; es wird stets nur eine Messhöhe verwendet (in der Regel die höchste). Die Datengrundlage kann auch als Zeitreihe oder Häufigkeitsverteilung vorliegen, windPRO führt dann die Umwandlung in sektorweise Weibullverteilungen selbständig durch.
  • Ein Terraindatenobjekt mit Informationen zu Orographie (Geländehöhen), Rauigkeiten und lokalen Hindernissen sowie gegebenenfalls Verdrängungshöhen zur Abbildung eines Waldeffekts

Wird eine regionale Windstatistik angewandt, um Windbedingungen an einem WEA-Standort zu ermitteln, wird zunächst aus den verfügbaren Daten der Teil extrahiert, der den Geländebedingungen am WEA-Standort am ähnlichsten ist, und dann noch genauer anhand der lokalen Bedingungen angepasst.

Der Prozess der Erstellung und Anwendung einer regionalen Windstatistik ist in der folgenden Grafik skizzenhaft dargestellt (Quelle: Europäischer Windatlas [2]).


Verwendung von regionalen Windstatistiken

Wenn eine regionale Windstatistik in einer Berechnung verwendet werden soll, so muss sie in einem Terraindatenobjekt über den Windstatistik-Viewer ausgewählt werden (Terraindatenobjekt (Zweck ATLAS, WAsP, RESOURCE) → Register WindstatistikWindstatistik(en) wählen ). Der Windstatistik-Viewer kann auch als eigenständiges Werkzeug über Menüband Klima → Windstatistik-Viewer  aufgerufen werden.

Beachten Sie, dass eine Windstatistik nur mit der WAsP-Version verwendet werden soll, mit der sie erzeugt wurde. Dies ist insbesondere relevant zwischen den WAsP-Versionen 10 und 11, da hier signifikante Anpassungen des WAsP-Modells vorgenommen wurden.


Einige Datenquellen für Windstatistiken benötigen eine eigene Lizenz des Datenherstellers, damit sie in windPRO verfügbar sind, siehe hierzu Vorinstallierte Windstatistiken. Wenn Windstatistiken aus Drittquellen akquiriert wurden, so müssen diese entweder im Verzeichnis \windPRO Data\Windstatistics\ oder im aktuellen Projektverzeichnis abgelegt werden, oder ihr Speicherort muss als eigenes Suchverzeichnis definiert werden.


Die tabellarische Ansicht der Windstatistiken bietet einige Vergleichswerte:

  • Abstand zur Position des Terraindatenobjekts
  • Energie: Bruttowindenergie als Prozentwert im Verhältnis zu 3.300 kWh/m2
  • WEA-Energieproduktion: Verhältnis der WEA-Produktion zu 1.025 kWh/m2, basierend auf einer WEA mit dem spezifischen Leistungswert von 0,45.

Das Vergleichs-Energieniveau wurde repräsentativ für einen "typischen" mitteleuropäischen Standort gewählt, mit einer mittleren Windgeschwindigkeit von 6,5 m/s auf 50 m ü.Gr. und Rauigkeitsklasse 1.

Der Vergleich der Windstatistiken in der gleichen Region anhand dieser Energiewerte kann bei der Bewertung der Zuverlässigkeit helfen. Wenn eine Statistik sehr stark von den Energiewerten der umgebenden Statistiken in vergleichbarem Gelände abweicht, kann dies auf eine schlechte Datenqualität hinweisen. Der Unterschied kann allerdings auch durch Variationen im Gelände (z.B. auf einem Hügel) begründet sein.


Die Karte sowie die Richtungsgrafik werden über die Checkboxen im linken unteren Bereich des Fensters aktiviert. In der Liste der Windstatistiken können mehrere Windstatistiken gleichzeitig ausgewählt werden (STRG-Klick). Werden mehrere Statistiken ausgewählt, so werden diese nach Bestätigung der Auswahl mit Ok für die Position des Terraindatenobjekts reziprok nach Abstand gewichtet; die Gewichtung kann jedoch auch angepasst werden.

Achtung: Die Gewichtung beruht auf einer einfachen linearen Skalierung von A-, k- und Sektorhäufigkeits-Parametern, die für jeden Sektor individuell durchgeführt wird. Sie sollte nur bei Windstatistiken durchgeführt werden, deren Richtungsverteilungen relativ ähnlich sind. Wurden regionale Windstatistiken aus mehreren Messmasten am Standort erzeugt, ist dies in der Regel der Fall, bei weiter entfernten regionalen Windstatistiken, z.B. aus Drittquellen, ist es eher die Ausnahme.


Metadaten einer Windstatistik bearbeiten

Die Schaltfläche Metadaten bearbeiten öffnet das folgende Fenster:



Zum einen können hier Metadaten ergänzt oder geändert werden, z.B. bei Windstatistiken aus Drittquellen, die keine Koordinateninformationen enthalten.

Zum anderen können hier eingesehen werden:

  • Bericht drucken erstellt einen ausdruckbaren Bericht zur Windstatistik
  • Die WAsP-Parameter, die bei Erzeugung der Windstatistik verwendet wurden (und die demnach auch automatisch bei der Verwendung der Windstatistik zur Anwendung kommen)#
  • Zusätzl. Info zeigen: Informationen zur Gestehung der Windstatistik, z.B. zur Langzeitkorrektur (s.u.)



Energieniveau einer Windstatistik ändern

Diese Option wird hier erläutert: Windgeschwindigkeits-Korrektur einer Windstatistik



  1. http://www.globalwindatlas.com/ (letzter Zugriff: 11.1.2024)
  2. Troen, Ib; Lundtang Petersen, Erik: European Wind Atlas; Risø National Laboratory, 1989; letzter Zugriff 22.1.2024