Difference between revisions of "NORD2000-Berechnung"

From Wiki-WindPRO
Jump to navigation Jump to search
Line 35: Line 35:
  
  
====Standard-Berechnung ====
+
===Standard-Berechnung ===
  
=====Register ''WEA''=====
+
====Register ''WEA''====
  
 
Mit Hilfe des WEA-Registers können die gewünschten WEA für die Berechnung ausgewählt werden. Dieses Register ist auch Bestandteil vieler anderer Berechnungen in WindPRO.
 
Mit Hilfe des WEA-Registers können die gewünschten WEA für die Berechnung ausgewählt werden. Dieses Register ist auch Bestandteil vieler anderer Berechnungen in WindPRO.
Line 59: Line 59:
  
  
=====Register ''Immissionsorte''=====
+
====Register ''Immissionsorte''====
  
 
In diesem Register werden die [[Schall-Immissionsort]]e ausgewählt.  
 
In diesem Register werden die [[Schall-Immissionsort]]e ausgewählt.  
Line 70: Line 70:
  
  
=====Register ''Gelände''=====
+
====Register ''Gelände''====
  
 
Hier wird das Gelände durch die Unterkategorien Höhendaten, Rauigkeit, Geländetyp (Geländehärte) definiert.
 
Hier wird das Gelände durch die Unterkategorien Höhendaten, Rauigkeit, Geländetyp (Geländehärte) definiert.
Line 108: Line 108:
 
Die akustische Härte repräsentiert eine bedeutsame Eigenschaft der Geländeoberfläche. In WindPRO existieren 7 Kategorien (A-F; Plovsing, 2010):
 
Die akustische Härte repräsentiert eine bedeutsame Eigenschaft der Geländeoberfläche. In WindPRO existieren 7 Kategorien (A-F; Plovsing, 2010):
  
[[File:DE_UMWELT_NORD (98).png]]
+
[[File:DE_UMWELT_NORD (98).png|250px]]
  
 
In der Umgebung eines Standortes kann die Geländehärte beträchtlich variieren und z.B. Seen, Felder und Wälder nebeneinander auftreten. Dies kann mit Hilfe des Arealobjekts nachgebildet werden.  
 
In der Umgebung eines Standortes kann die Geländehärte beträchtlich variieren und z.B. Seen, Felder und Wälder nebeneinander auftreten. Dies kann mit Hilfe des Arealobjekts nachgebildet werden.  
  
[[File:DE_UMWELT_NORD (99).png]]
+
[[File:DE_UMWELT_NORD (99).png|500px]]
  
[[File:DE_UMWELT_NORD (100).png]]
+
[[File:DE_UMWELT_NORD (100).png|500px]]
  
 
Dafür müssen die relevanten Flächentypen samt Hintergrund definiert werden. Dies geschieht analog zur üblichen Vorgehensweise für Arealobjekte.  
 
Dafür müssen die relevanten Flächentypen samt Hintergrund definiert werden. Dies geschieht analog zur üblichen Vorgehensweise für Arealobjekte.  
Line 120: Line 120:
 
Beim Hinzufügen eines neuen Flächentyps oder beim Editieren eines bereits existierenden kann die Eigenschaft für die Geländehärte bestimmt werden. Überdies kann eine zeitliche Fluktuation der Vorgabewerte der Geländehärte über die Auswahl der betreffenden Monate festgelegt werden.  
 
Beim Hinzufügen eines neuen Flächentyps oder beim Editieren eines bereits existierenden kann die Eigenschaft für die Geländehärte bestimmt werden. Überdies kann eine zeitliche Fluktuation der Vorgabewerte der Geländehärte über die Auswahl der betreffenden Monate festgelegt werden.  
  
[[File:DE_UMWELT_NORD (101).png]]
+
[[File:DE_UMWELT_NORD (101).png|600px]]
  
 
Es ist möglich, Landnutzungskarten in ein Areal-Objekt zu laden und jedem Landnutzungstyp eine Wert für die akustische Härte zuzuweisen. Die Berechnungsgeschwindigkeit ist allerdings proportional zum Detailgrad der Geländehärte-Karte - detaillierte Karten können die Berechnung sehr langsam machen. Wenn dies der Fall ist, sollte die Geländehärte-Karte vereinfacht werden; dies bringt in der Regel nur eine vernachlässigbare Reduktion der Berechnungsgenauigkeit mit sich.
 
Es ist möglich, Landnutzungskarten in ein Areal-Objekt zu laden und jedem Landnutzungstyp eine Wert für die akustische Härte zuzuweisen. Die Berechnungsgeschwindigkeit ist allerdings proportional zum Detailgrad der Geländehärte-Karte - detaillierte Karten können die Berechnung sehr langsam machen. Wenn dies der Fall ist, sollte die Geländehärte-Karte vereinfacht werden; dies bringt in der Regel nur eine vernachlässigbare Reduktion der Berechnungsgenauigkeit mit sich.
  
  
=====Register ''Wind''=====
+
====Register ''Wind''====
  
 
[[File:DE_UMWELT_NORD (102).png|700px]]
 
[[File:DE_UMWELT_NORD (102).png|700px]]
Line 155: Line 155:
 
Bitte beachten Sie:
 
Bitte beachten Sie:
  
# Die Wake-basierte Reduktion der Windgeschwindigkeit ist nicht berücksichtigt. Soll diese einbezogen werden, muss auf dem Register '''Hauptteil''' [[NORD2000-Berechnung#Verwendung einer WiW-Datei|Verwendung einer WiW-Datei]] ausgewählt werden. Ob die Nachlaufströmungen den Schallleistungspegel verringern (aufgrund niedrigerer Windgeschwindigkeiten – dies wird von NORD2000 angenommen) oder in Wirklichkeit aufgrund der Turbulenzen erhöhen, wird nach wie vor debattiert (Madsen et.al, 2011.). Dies sollte bei der Anwendung der WiW-Option berücksichtigt werden.  
+
# Die Wake-basierte Reduktion der Windgeschwindigkeit ist nicht berücksichtigt. Soll diese einbezogen werden, muss auf dem Register '''Hauptteil''' die [[NORD2000-Berechnung#Verwendung einer WiW-Datei|Verwendung einer WiW-Datei]] ausgewählt werden. Ob die Nachlaufströmungen den Schallleistungspegel verringern (aufgrund niedrigerer Windgeschwindigkeiten – dies wird von NORD2000 angenommen) oder in Wirklichkeit aufgrund der Turbulenzen erhöhen, wird nach wie vor debattiert (Madsen et.al, 2011.). Dies sollte bei der Anwendung der WiW-Option berücksichtigt werden.  
 
# Eine eventuelle Richtwirkung des WEA-Schalls ist nicht berücksichtigt. Nach aktuellen Richtlinien vermessene Schallleistungspegel sind worst-case-Pegel, die direkt vor der WEA ermittelt wurden. Wenn eine WEA zur Seite eine geringere Schallabstrahlung hat (was aufgrund der kleineren abstrahlenden Fläche anzunehmen ist), so sind auch die Schallemissionen dort geringer. Dieser Umstand ist aber für gängige WEA kaum oder gar nicht dokumentiert.
 
# Eine eventuelle Richtwirkung des WEA-Schalls ist nicht berücksichtigt. Nach aktuellen Richtlinien vermessene Schallleistungspegel sind worst-case-Pegel, die direkt vor der WEA ermittelt wurden. Wenn eine WEA zur Seite eine geringere Schallabstrahlung hat (was aufgrund der kleineren abstrahlenden Fläche anzunehmen ist), so sind auch die Schallemissionen dort geringer. Dieser Umstand ist aber für gängige WEA kaum oder gar nicht dokumentiert.
  
Line 163: Line 163:
  
  
=====Register ''Windscherung''=====
+
====Register ''Windscherung''====
  
 
Die Angaben auf diesem Register dienen dazu, die Windgeschwindigkeit in Referenzhöhe auf Nabenhöhe umzurechnen. Hiermit kann dann der adäquate Schallleistungspegel für die WEA ausgewählt werden kann.
 
Die Angaben auf diesem Register dienen dazu, die Windgeschwindigkeit in Referenzhöhe auf Nabenhöhe umzurechnen. Hiermit kann dann der adäquate Schallleistungspegel für die WEA ausgewählt werden kann.
Line 182: Line 182:
  
  
=====Register ''Wetter/Stabilität''=====
+
====Register ''Wetter/Stabilität''====
  
 
In diesem Register können die meteorologischen Parameter festgelegt werden.  
 
In diesem Register können die meteorologischen Parameter festgelegt werden.  
Line 217: Line 217:
  
  
==== Mittlere Immission / Überschreitungswahrscheinlichkeit ====
+
=== Mittlere Immission / Überschreitungswahrscheinlichkeit ===
  
 
Die Berechnung der mittleren Immission führt Berechnungen für alle ganzzahligen Windgeschwindigkeiten in 12 Richtungssektoren durch und verwendet dann die sektoriellen Weibullverteilungen des Standorts, um die Gewichtungen zu ermitteln. Das Ergebnis kann als Mittelwert oder als Überschreitungswahrscheinlichkeit angegeben werden (z.B. L<sub>10</sub> oder L<sub>90</sub>, wobei letzteres hier bedeuten würde, dass der Beurteilungspegel 90% der Zeit darunter liegt).
 
Die Berechnung der mittleren Immission führt Berechnungen für alle ganzzahligen Windgeschwindigkeiten in 12 Richtungssektoren durch und verwendet dann die sektoriellen Weibullverteilungen des Standorts, um die Gewichtungen zu ermitteln. Das Ergebnis kann als Mittelwert oder als Überschreitungswahrscheinlichkeit angegeben werden (z.B. L<sub>10</sub> oder L<sub>90</sub>, wobei letzteres hier bedeuten würde, dass der Beurteilungspegel 90% der Zeit darunter liegt).
Line 226: Line 226:
  
  
=====Register ''Wind'' (Mittlere Immission)=====
+
====Register ''Wind'' (Mittlere Immission)====
  
 
Auf dem Register '''Wind''' wird die Zeitreihe ausgewählt, anhand derer die Gewichtung der Windgeschwindigkeiten / -richtungen ermittelt wird:
 
Auf dem Register '''Wind''' wird die Zeitreihe ausgewählt, anhand derer die Gewichtung der Windgeschwindigkeiten / -richtungen ermittelt wird:
Line 245: Line 245:
  
  
==== Schwedische Vorschrift ====
+
=== Schwedische Vorschrift ===
  
 
Die schwedischen Schallrichtlinien sind in der Schrift "Ljud från vindkraftverk" von Naturvärdsverket veröffentlicht. In der Ausgabe vom 20. April 2010 ist die Möglichkeit beschrieben, den durch Windenergieanlagen verursachten Lärm mit Hilfe von NORD200 zu berechnen.
 
Die schwedischen Schallrichtlinien sind in der Schrift "Ljud från vindkraftverk" von Naturvärdsverket veröffentlicht. In der Ausgabe vom 20. April 2010 ist die Möglichkeit beschrieben, den durch Windenergieanlagen verursachten Lärm mit Hilfe von NORD200 zu berechnen.
Line 252: Line 252:
  
  
=====Register ''Wind'' (Schwedische Vorschrift)=====
+
====Register ''Wind'' (Schwedische Vorschrift)====
  
 
Die schwedische Vorschrift sieht eine Mitwindkonstellation vor. Die Berechnung nach schwedischen Vorschriften führt eine Richtung/-geschwindigkeits-Analyse für jeden Sektor durch und wählt das lauteste Ergebnis für jeden Rezeptor aus.
 
Die schwedische Vorschrift sieht eine Mitwindkonstellation vor. Die Berechnung nach schwedischen Vorschriften führt eine Richtung/-geschwindigkeits-Analyse für jeden Sektor durch und wählt das lauteste Ergebnis für jeden Rezeptor aus.
Line 262: Line 262:
 
{{Hervorhebung|Anmerkung zu Tieffrequenz-Berechnungen nach Schwedischer Richtlinie
 
{{Hervorhebung|Anmerkung zu Tieffrequenz-Berechnungen nach Schwedischer Richtlinie
  
Die Methodik hierfür wurde bisher noch nicht in NORD2000 implementiert, es ist aber möglich, ein Teilergebnis mit NORD2000 zu erhalten. Wählen Sie die '''Standard'''-Berechnung, markieren Sie die Checkbox '''Tieffrequenz-Berechnung''' und folgen Sie der Anleitung weiter unten [[HIER LINK ZU CHAPTER UNTEN]]. Das Ergebnis kann via [[Ergebnis in Datei]] als Terzbänder (EN: "1/3 octave band") nach Excel exportiert werden. Entfernen Sie die A-Gewichtung von der resultierenden Verteilung und überprüfen Sie, ob die Werte unter den Werten der Schwedischen Richtlinie liegen.}}
+
Die Methodik hierfür wurde bisher noch nicht in NORD2000 implementiert, es ist aber möglich, ein Teilergebnis mit NORD2000 zu erhalten. Wählen Sie die '''Standard'''-Berechnung, markieren Sie die Checkbox '''Tieffrequenz-Berechnung''' und folgen Sie der Anleitung zu [[NORD2000#Tieffrequente Geräusche|tieffrequenten Geräuschen]] weiter unten. Das Ergebnis kann via [[Ergebnis in Datei]] als Terzbänder (EN: "1/3 octave band") nach Excel exportiert werden. Entfernen Sie die A-Gewichtung von der resultierenden Verteilung und überprüfen Sie, ob die Werte unter den Werten der Schwedischen Richtlinie liegen.}}
  
=====Register ''Wetter/Stabilität'' (Schwedische Vorschrift)=====
+
====Register ''Wetter/Stabilität'' (Schwedische Vorschrift)====
  
 
Die meteorologischen Konstellationen sind nicht in "Ljud från vindkraftverk" spezifiziert. Die Optionen sind daher belassen wie [[NORD2000-Berechnung#Register Wetter/Stabilität|hier]] beschrieben
 
Die meteorologischen Konstellationen sind nicht in "Ljud från vindkraftverk" spezifiziert. Die Optionen sind daher belassen wie [[NORD2000-Berechnung#Register Wetter/Stabilität|hier]] beschrieben
  
  
====Norwegische Vorschrift, worst case====
+
===Norwegische Vorschrift, worst case===
  
 
Dies ist eine Implementierung der worst-case-Bedingungen wie beschrieben in der Norwegischen Richtlinie von NVE 2017-18.
 
Dies ist eine Implementierung der worst-case-Bedingungen wie beschrieben in der Norwegischen Richtlinie von NVE 2017-18.
Line 279: Line 279:
  
  
=====Register ''Wind'' (Norwegen, worst case)=====
+
====Register ''Wind'' (Norwegen, worst case)====
  
 
Hier findet sich der wichtigste Unterschied zur '''Standard'''-Berechnung:
 
Hier findet sich der wichtigste Unterschied zur '''Standard'''-Berechnung:
Line 295: Line 295:
  
  
=====Register ''Wetter/Stabilität'' (Norwegen, worst case)=====
+
====Register ''Wetter/Stabilität'' (Norwegen, worst case)====
  
 
* Die Stabilitätsparameter sind festgelegt auf Nacht / Klar
 
* Die Stabilitätsparameter sind festgelegt auf Nacht / Klar
Line 301: Line 301:
  
  
====Norwegische Vorschrift, realitätsnah====
+
===Norwegische Vorschrift, realitätsnah===
  
Dies ist eine Implementierung der real-case-Bedingungen wie beschrieben in der Norwegischen Richtlinie von NVE 2017-18. Effektiv ist dies eine Kombination des [[NORD2000-Berechnung#Norwegische Vorschrift, worst case|Norwegischen worst-case-Modells]] und  
+
Dies ist eine Implementierung der real-case-Bedingungen wie beschrieben in der Norwegischen Richtlinie von NVE 2017-18. Effektiv ist dies eine Kombination des [[NORD2000-Berechnung#Norwegische Vorschrift, worst case|Norwegischen worst-case-Modells]] und der statistischen Methode [[NORD2000-Berechnung#Mittlere Immission / Überschreitungswahrscheinlichkeit|Mittlere Immission / Überschreitungswahrscheinlichkeit]].
  
Die L<sub>den</sub>-Option wird automatisch angewählt mit der norwegischen Definition der L<sub>den</sub>-Parameter:
+
L<sub>den</sub> wird wie in der Norwegischen worst-case-Vorschrift gesetzt.
 +
 
 +
Es wird die mittlere Immission ermittelt, also der L<sub>50</sub>.
 +
 
 +
 
 +
====Register ''Wind'' (Norwegen, realitätsnah)====
 +
 
 +
 
 +
[[File:DE_UMWELT_NORD (107.3).png|700px]]
 +
 
 +
 
 +
*Alle ganzzahligen Windgeschwindigkeiten von 1 bis 25 m/s werden berechnet
 +
*12 x 30°-Sektoren (0° bis 330° Sektormitte) werden berechnet
 +
*ein Winddatenquelle entsprechend den Angaben unter [[NORD2000-Berechnung#Mittlere Immission / Überschreitungswahrscheinlichkeit|Mittlere Immission / Überschreitungswahrscheinlichkeit]] muss angegeben werden.
 +
 
 +
 
 +
====Register ''Wetter/Stabilität'' (Norwegen, realitätsnah)====
 +
 
 +
Diese Einstellungen können frei gewählt werden.
  
  
====Verwendung einer WiW-Datei====
+
===Verwendung einer WiW-Datei===
  
 
Die Anwendung des Berechnungstyps '''Mit WiW-Datei''' bietet eine experimentelle Option, die es ermöglicht die Windgeschwindigkeit respektive den Schallleistungspegel bei entsprechenden Wake-Konstellationen (Nachlaufströmung) zu berücksichtigen.
 
Die Anwendung des Berechnungstyps '''Mit WiW-Datei''' bietet eine experimentelle Option, die es ermöglicht die Windgeschwindigkeit respektive den Schallleistungspegel bei entsprechenden Wake-Konstellationen (Nachlaufströmung) zu berücksichtigen.
  
 
Für diese Berechnung wird als Eingangsdatum eine '''W'''indgeschwindigkeit '''i'''n '''W'''indfarm-Datei benötigt. Diese wird innerhalb einer PARK-Berechnung erzeugt (Kapitel 3.4.1.4). Setzen Sie einen Haken bei '''Erweiterte Optionen zeigen '''und wählen Sie ein von N.O.Jensen (RISØ/EMD) abweichendes Wake-Modell aus, danach aktivieren Sie die Box '''Reduzierte Windgeschw. in Windfarm'''.
 
Für diese Berechnung wird als Eingangsdatum eine '''W'''indgeschwindigkeit '''i'''n '''W'''indfarm-Datei benötigt. Diese wird innerhalb einer PARK-Berechnung erzeugt (Kapitel 3.4.1.4). Setzen Sie einen Haken bei '''Erweiterte Optionen zeigen '''und wählen Sie ein von N.O.Jensen (RISØ/EMD) abweichendes Wake-Modell aus, danach aktivieren Sie die Box '''Reduzierte Windgeschw. in Windfarm'''.
 +
  
 
[[File:DE_UMWELT_NORD (108).png]]
 
[[File:DE_UMWELT_NORD (108).png]]
 +
  
 
Nachdem die Berechnung abgeschlossen ist, rechtsklicken Sie auf die Kopfzeile der Berechnung und wählen Sie '''Ergebnis in Datei'''. In der Liste erscheint die Auswahl '''Windgeschwindigkeit in Windpark'''.
 
Nachdem die Berechnung abgeschlossen ist, rechtsklicken Sie auf die Kopfzeile der Berechnung und wählen Sie '''Ergebnis in Datei'''. In der Liste erscheint die Auswahl '''Windgeschwindigkeit in Windpark'''.
  
 
Klicken Sie auf '''Speichern als''' und geben Sie einen Dateinamen an, dann legen Sie die Windgeschwindigkeiten und Windrichtungen für die spätere Analyse in NORD2000 fest:
 
Klicken Sie auf '''Speichern als''' und geben Sie einen Dateinamen an, dann legen Sie die Windgeschwindigkeiten und Windrichtungen für die spätere Analyse in NORD2000 fest:
 +
  
 
[[File:DE_UMWELT_NORD (109).png]]  
 
[[File:DE_UMWELT_NORD (109).png]]  
 +
  
 
Die angegebenen Windgeschwindigkeiten sind freie Windgeschwindigkeiten in Nabenhöhe. In der Ergebnisdatei wird für jede gewählte Kombination von freier Windgeschwindigkeit und Richtung angegeben, welche nicht-freie (wake-beeinflusste) Windgeschwindigkeit an den einzelnen WEA des Parks herrscht. Diese werden verwendet, um den Schallleistungspegel der WEA zu bestimmen.  
 
Die angegebenen Windgeschwindigkeiten sind freie Windgeschwindigkeiten in Nabenhöhe. In der Ergebnisdatei wird für jede gewählte Kombination von freier Windgeschwindigkeit und Richtung angegeben, welche nicht-freie (wake-beeinflusste) Windgeschwindigkeit an den einzelnen WEA des Parks herrscht. Diese werden verwendet, um den Schallleistungspegel der WEA zu bestimmen.  
Line 331: Line 353:
  
  
===Mittlere Immission / Überschreitungswahrscheinlichkeit===
+
===Tieffrequente Geräusche===
  
Bei diesem Berechnugstyp geht es nicht um eine spezifische Windgeschwindigkeit oder -richtung, sondern um die Gesamtheit der Windbedingungen am Standort. Es wird für jeden Immissionsort die Schallbelastung für alle ganzzahligen Windgeschwindigkeiten in 12 Sektoren berechnet und dann anhand der Weibullverteilung des Standorts gewichtet. Das Ergebnis kann als Mittlere Immission oder als Überschreitungswahrscheinlichkeit (z.B. L10 oder L90) ausgegeben werden.
+
Wenn auf dem ersten Register die Option '''Tieffrequente Geräusche''' ausgewählt ist, wird die Modellierung nur für einen eingeschränkten Frequenzbereich durchgeführt. Dieser wird auf dem Register '''Tieffrequent''' konfiguriert:
  
Wird diese Option ausgewählt, so ändert sich das Register '''Wind''' wie folgt:
 
  
[[File:DE_UMWELT_NORD (109.5).png|600px]]
+
[[File:DE_UMWELT_NORD (109.6).png|700px]]
  
Die Windverteilung basiert auf einem METEO-Objekt (im obigen Beispiel mit Mesoskalen-Daten für 100m Höhe), das anhand der Informationen dem Windscherungs-Register auf die Berechnungshöhe skaliert wird. Für das Endergebnis ist die Höhe tatsächlich weniger ausschlaggebend, da wir keine spezifische Windgeschwindigkeit betrachten. Es ist daher sinnvoll, eine Höhe in der Nähe der Messhöhe zu wählen, um den Einfluss der Skalierung möglichst gering zu halten.
 
  
Wenn WAsP verwendet wird, um die Windgeschwindigkeits-Unterschiede am Standort zu modellieren, werden diese relativen Unterschiede für die Skalierung auf jeden Berechnungspunkt verwendet.
+
Der verfügbare Bereich geht von 10Hz bis 250Hz – unterschiedliche Richtlinien verwenden unterschiedliche Bereiche. Weiterhin kann der Typ der Schalldämmung ausgwählt werden. Wenn der Lärm für Außenbereiche (im Gegensatz zu Innenräumen) berechnet werden soll, sollte '''Keine Dämpfung (Außengeräusch)''' gewählt werden.
  
Beachten Sie, dass dieses Modell die Stabilitätsunterschiede im Tages- und Jahresverlauf nicht berücksichtigt. Eine Windverteilung, die auf einer niedrigen Höhe basiert, wird diese Effekte eventuell nicht ausreichend wiederspiegeln. Es wird deshalb empfohlen, Zeitreihen nahe der Nabenhöhe zu verwenden.
+
Es sind drei Standards für Schalldämmung hinterlegt:
 +
* 60% und 90%-Quantil entsprechend der "Danish EPA"-Richtlinie. Die Prozentzahlen geben den Anteil an dänischen Gebäuden an, die besser isoliert sind als der angegebene Standard.
 +
* Sommerhäuser (Danish EPA): Leichtbaugebäude
  
Das Gelände wird ebenfalls über den Berechnungszeitraum konstant angenommen. Es sind also weder saisonale Effekte des Geländes noch der atmosphärischen Bedingungen berücksichtigt, mit Ausnahme der Windgeschwindigkeit und –richtung.
+
Knopf {{Knopf|Ansicht/Bearb.}}:
 
 
Wie bereits zuvor erwähnt sind auch Richtwirkungseffekte des WEA-Geräusches nicht berücksichtigt.
 
 
 
 
 
===Tieffrequente Geräusche===
 
 
 
Wenn auf dem ersten Register die Option '''Tieffrequente Geräusche''' ausgewählt ist, wird die Modellierung nur für einen eingeschränkten Frequenzbereich durchgeführt. Dieser wird auf dem Register '''Tieffrequent''' konfiguriert:
 
  
[[File:DE_UMWELT_NORD (109.6).png|600px]]
 
  
Der verfügbare Bereich geht von 25Hz bis 250Hz – unterschiedliche Richtlinien verwenden unterschiedliche Bereiche. NORD2000 ist nicht anwendbar für Frequenzen unter 25Hz.
+
[[File:DE_UMWELT_NORD (109.61).png|550px]]
Weiterhin kann der Typ der Schalldämmung ausgwählt werden. Wenn der Lärm für Außenbereiche (im Gegensatz zu Innenräumen) berechnet werden soll, sollte '''Keine Dämpfung (Außengeräusch)''' gewählt werden.
 
  
Es sind zwei Standards für Schalldämmung hinterlegt, 60% und 90%-Quantil entsprechend der "Danish EPA"-Richtlinie. Die Prozentzahlen geben den Anteil an dänischen Gebäuden an, die besser isoliert sind als der angegebene Standard.
 
  
 
Es können eigene Werte angegeben werden, um lokalen Richtlinien Rechnung zu tragen.
 
Es können eigene Werte angegeben werden, um lokalen Richtlinien Rechnung zu tragen.

Revision as of 18:48, 15 January 2020

Zur deutschen Hauptseite | Alle deutschsprachigen Seiten


Dieses Kapitel behandelt nur die Eingaben im Berechnungsmodul. Für Berechnungsvoraussetzungen und einen Überblick über den gesamten Berechnungsablauf siehe NORD2000-Überblick.


Zum Start einer NORD2000-Berechnung klicken Sie im Modulfenster auf den grünen Pfeil vor NORD2000 (ein gelber Pfeil wird gezeigt, wenn das Modul nicht lizenziert ist)

Es kann zwischen mehreren Berechnungstypen ausgewählt werden:

DE UMWELT NORD (95).png


Standard-Berechnung: Die gängigsten Berechnungsoptionen stehen zur Verfügung.

Mittlere Immission / Überschreitungswahrscheinlichkeit: Ermittelt für die angegebenen meteorologischen Bedingungen die mittlere Immission an Rezeptoren.

Schwedische Vorschrift: Verwendet die Parametereinstellungen der Vorschrift “Ljud Från Vindkraftverk” (Lärm von Windenergieanlagen), Naturvårdsverket, April 2010.

Schall Norwegen, worst case: Verwendet die Parametereinstellungen für die worst-case-Situation, die in der Norwegischen Vorschrift 2017/18 beschrieben wird.

Schall Norwegen, real case: Verwendet die Parametereinstellungen für die realistische Situation, die in der Norwegischen Vorschrift 2017/18 beschrieben wird.

Mit WiW-Datei („Windgeschwindigkeit innerhalb des Windparks“): Hierfür muss zunächst eine PARK-Berechnung mit erweiterter Option Reduzierte Windgeschw. In Windfarm durchgeführt werden und deren Ergebnisse via Ergebnis in Datei gespeichert werden. Die resultierende WiW-Datei (*.txt) enthält die die Windgeschwindigkeit an jeder Anlage für unterschiedliche Windrichtungen und –geschwindigkeiten. Sie erlaubt auch die Berücksichtigung von Windgeschwindigkeits-Reduktionen durch Wake-Effekte.

ist eine Ermittlung der Schallimmissionen an Rezeptoren, ausgehend von einem Windpark unter dem Einfluss von spezifischen Bedingungen. Diese Berechnung hat nur Gültigkeit zum Zeitpunkt, zu welchem die Bedingungen herrschen. Das bedeutet eine spezifische Windgeschwindigkeit, Windrichtung, Temperatur, Luftfeuchte, Geländeeigenschaften etc.

Tieffrequenz-Berechnung: Die verschiedenen Berechnungstypen können auch für tieffrequenten Schall durchgeführt werden.

Lden-Berechnung (day-evening-night, Tag-Abend-Nacht): Hierbei werden für jede der Tageszeiten eigene Berechnungen unter Verwendung der in den WEA-Objekten angegebenen tageszeitspezifischen Schalldaten durchgeführt. Die drei Einzelberechnungen weden dann in einem einzigen Lden-Wert zusammengeführt.

Weiterhin können die Ergebnisse der ersten fünf Berechnugnstypen als Isophonenkarten ausgegeben werden.

Die folgende Beschreibung bezieht sich auf die Standard-Berechnung. Die anderen Berechnungsoptionen werden im Anschluss erläutert.


Standard-Berechnung

Register WEA

Mit Hilfe des WEA-Registers können die gewünschten WEA für die Berechnung ausgewählt werden. Dieses Register ist auch Bestandteil vieler anderer Berechnungen in WindPRO.

DE UMWELT NORD (96).png

Das obere Segment des Fensters bildet die Layer aus dem WindPRO Projekt ab. Die im Projekt aktivierten Layer (sichtbar im Karten- und Objektefenster) sind automatisch ausgewählt. Zusätzliche Layer können an dieser Stelle selektiert oder deselektiert werden. Zur übersichtlicheren Handhabung bietet es sich an, verschiedene Layout-Varianten über Layer zu organisieren.

Dem mittleren Segment ist zu entnehmen wie viele neue und existierende Anlagen ausgewählt wurden. Wird das Häkchen in der Box links neben dem Text gesetzt, werden alle Anlagen aus dieser Kategorie selektiert.

Werden die Kästchen nicht mit Haken versehen, erscheint eine weitere Sektion unten, in der die Anlagen aus den ausgewählten Layern individuell selektiert werden können.

Entsprechend dem Typ der Berechnung werden bestimmte Schalldaten für die Anlagen benötigt. Dies können z.B. Schallleistungspegel für mehrere Windgeschwindigkeiten in 1 m/s-Schritten von 4 bis 12 m/s sein, in der Regel als Oktav- oder Terzbandpegel. Eine Beschreibung, wie die Schalldaten einzupflegen sind, wird hier erläutert. Unter WEA-Schalldatenauswahl wird erläutert, wie für ein WEA-Objekt auf der Karte ein bestimmter Schalldatensatz gewählt wird.

WindPRO interpoliert bei Bedarf linear zwischen Windgeschwindigkeiten, bei der Extrapolation werden bestimmen die zwei nächstgelegenen Windgeschwindigkeiten die Steigung.

Liegt die Oktavbandverteilung nicht für alle Windgeschwindigkeiten vor, wird der Datensatz mit Oktavbändern zur Extrapolation des Schallpegels verwendet, der die geringste Abweichung zur gesuchten Windgeschwindigkeit aufweist.

Der WEA-Katalog kann Schallpegel für die Höhen von 10 m über Grund sowie für Nabenhöhe aufnehmen. NORD2000 nutzt die Schallpegel auf Nabenhöhe. Liegen nur Daten für 10 m ü. Gr. vor, so können diese in Nabenhöhe umgerechnet werden. Es ist jedoch stets zu bevorzugen, Schalldaten für Wind in Nabenhöhe direkt vom Hersteller zu bekommen.


Register Immissionsorte

In diesem Register werden die Schall-Immissionsorte ausgewählt.

Die Auswahl funktioniert ähnlich wie die der WEA (vorheriger Abschnitt).

Es gibt keine NORD2000-spezifischen Eigenschaften für Schall-Immissionsorte.

Die NORD2000-Berechnung ist derzeit nur für die Ermittlung von Immissionen durch WEA konzipiert, Umgebungslärm wird nicht berücksichtigt. Den Schall-Immissionsorten sollte aus diesem Grund nur der Immissionsrichtwert zugewiesen werden, der für die Windenergieanlagen relevant ist.


Register Gelände

Hier wird das Gelände durch die Unterkategorien Höhendaten, Rauigkeit, Geländetyp (Geländehärte) definiert.

DE UMWELT NORD (97).png


Höhendaten

Eben: Für das Gelände wird eine einheitliche Höhe ü.NN. angenommen. Falls Objekte (WEA, Immissionsorte) Z-Höhen haben, werden diese dennoch auf den Berichten ausgegeben.

Basiert auf Linienobjekt / Basiert auf Höhenraster: Verwendet Höheninformationen aus dem Linien-Objekt oder dem Höhenraster-Objekt, um den Einfluss des Geländes auf den Schallweg zwischen WEA und Rezeptor zu berechnen.

NORD2000 erstellt mit Hilfe der Höhendaten ein Geländeprofil von der Windenergieanlage zum Rezeptor. Je größer der Unterschied zwischen Sichtlinie und Gelände, desto geringer ist die Dämpfung durch das Gelände. Der Neigungswinkel des Geländes spielt ebenfalls eine Rolle.


Rauigkeitsdaten

Die Rauigkeit der Geländeoberfläche führt zu einer Reduktion der Windgeschwindigkeit in Bodennähe. Die reduzierte Windgeschwindigkeit nimmt nach oben hin zu, je höher die Geländerauigkeit, desto größer die Zunahme. Eine Beschreibung des Konzepts der Rauigkeit ist hier (Rauigkeit) zu finden. Die Rauigkeitsbeschreibung wird verwendet um das Windprofil abzubilden, welches maßgeblich die Schallausbreitung beeinflusst.

Einheitliche Rauigkeitslänge/-klasse. Die Berechnung wird unter Annahme einer einheitlichen Rauigkeitslänge (z0) oder –Klasse durchgeführt.

Arealobjekt. Bei dieser Einstellung wird ein Areal-Objekt mit flächenhaften Rauigkeiten für die Berechnung verwendet .

Linienobjekt. Bei dieser Einstellung wird ein Linien-Objekt ausgewählt. Solche Linienobjekte mit Rauigkeitsdaten werden üblicherweise auch bei der Berechnung der Energieproduktion verwendet.


Geländetyp

Der Geländetyp steht als Überbegriff für die akustischen Geländehärte-Typen, die sich nach der Schallabsorption unterscheiden.

Einheitlich. Ein Attribut aus der Auswahlliste kann gewählt werden, deren Eigenschaft einheitlich für die Berechnung gilt.

Arealobjekt. Bei dieser Option wird ein Areal-Objekt mit NORD2000-Eigenschaften gewählt.

Die akustische Härte repräsentiert eine bedeutsame Eigenschaft der Geländeoberfläche. In WindPRO existieren 7 Kategorien (A-F; Plovsing, 2010):

DE UMWELT NORD (98).png

In der Umgebung eines Standortes kann die Geländehärte beträchtlich variieren und z.B. Seen, Felder und Wälder nebeneinander auftreten. Dies kann mit Hilfe des Arealobjekts nachgebildet werden.

DE UMWELT NORD (99).png

DE UMWELT NORD (100).png

Dafür müssen die relevanten Flächentypen samt Hintergrund definiert werden. Dies geschieht analog zur üblichen Vorgehensweise für Arealobjekte.

Beim Hinzufügen eines neuen Flächentyps oder beim Editieren eines bereits existierenden kann die Eigenschaft für die Geländehärte bestimmt werden. Überdies kann eine zeitliche Fluktuation der Vorgabewerte der Geländehärte über die Auswahl der betreffenden Monate festgelegt werden.

DE UMWELT NORD (101).png

Es ist möglich, Landnutzungskarten in ein Areal-Objekt zu laden und jedem Landnutzungstyp eine Wert für die akustische Härte zuzuweisen. Die Berechnungsgeschwindigkeit ist allerdings proportional zum Detailgrad der Geländehärte-Karte - detaillierte Karten können die Berechnung sehr langsam machen. Wenn dies der Fall ist, sollte die Geländehärte-Karte vereinfacht werden; dies bringt in der Regel nur eine vernachlässigbare Reduktion der Berechnungsgenauigkeit mit sich.


Register Wind

DE UMWELT NORD (102).png

Hier werden Windrichtung und Windgeschwindigkeit eingegeben. Über die hier getätigten Einstellungen wird auch der entsprechende Schallleistungspegel ausgewählt.

Einheitliche Windgeschwindigkeit in Windfarm:
Dies ist die Standardoption. Damit wird allen Anlagen dieselbe Windgeschwindigkeit in Nabenhöhe und somit auch derselbe Schallleistungspegel zugewiesen.

Windgeschwindigkeit auf WEA-Standorte umrechnen:
Bei Windparks in komplexem Gelände liegt nicht zur selben Zeit dieselbe Windgeschwindigkeit an jeder WEA vor. Die Unterschiede sind zudem windrichtungsabhängig. Soll eine Berechnung dies berücksichtigen, wird ein klarer Referenzpunkt benötigt, für den die Windgeschwindigkeit angegeben wird und von dem aus auf die WEA umgerechnet wird. Die Umrechnung zwischen Referenzpunkt und WEA-Nabenhöhe wird mittels WAsP vorgenommen (Lizenz benötigt). Weiteres hierzu siehe unten bei Umrechnungsmethode von Referenzpunkt auf WEA.

Berechnungswindgeschwindigkeit [m/s]:
Die Windgeschwindigkeit wird für eine Referenzhöhe (Höhe ü.Gr.) angegeben und auf Nabenhöhe umgerechnet (siehe Register Windscherung).

  • Einzelne führt die Berechnung für die angegebene Windgeschwindigkeit durch.
  • Bereich von Windgeschwindigkeiten führt die Berechnung für jede der angegebenen WG durch und gibt das höchste Ergebnis wird aus.
  • Für max. Geräusch nimmt für jede WEA die höchste Emission an. Dies ist einfacher als die Option "Bereich"; da jedoch die verschiedenen Frequenzen über die Entfernung unterschiedlich gedämpft werden, kann es je nach Frequenzspektrum der Emission sein, dass der höchste Emissionspegel nicht zu den höchsten Immissionen führt.

Berechnungswindrichtung [° im UZS ab Nord]

  • Einzelne führt die Berechnung für die angegebene Windrichtung durch.
  • Bereich führt für die angegebenen Windrichtungen Einzelberechnungen durch und gibt für die Rezeptoren jeweils den höchsten berechneten Wert aus.
  • 'Immer im Lee nimmt an, dass der Wind an den Rezeptoren immer aus Richtung der WEA kommt, auch wenn verschiedene WEA in verschiedenen Richtungen stehen. Dies ist keine realistische Situation, sorgt aber für ein pessimales Berechnungsergebnis.

Umrechnungsmethode von Referenzpunkt auf WEA:
Die benötigten Daten zur WAsP-Modellierung müssen in einem Terraindatenobjekt (Zweck: Windstatistik-Erzeugung) vorliegen.

Die so ermittelte Windgeschwindigkeit in Nabenhöhe für jede Anlage wird verwendet um den adäquaten Schallleistungspegel zu bestimmen. Ein Schalldatensatz sollte Schallleistungspegel für verschiedene Windgeschwindigkeiten enthalten, WindPRO interpoliert bei Bedarf zwischen den 2 nächstgelegenen Windgeschwindigkeiten.

Bitte beachten Sie:

  1. Die Wake-basierte Reduktion der Windgeschwindigkeit ist nicht berücksichtigt. Soll diese einbezogen werden, muss auf dem Register Hauptteil die Verwendung einer WiW-Datei ausgewählt werden. Ob die Nachlaufströmungen den Schallleistungspegel verringern (aufgrund niedrigerer Windgeschwindigkeiten – dies wird von NORD2000 angenommen) oder in Wirklichkeit aufgrund der Turbulenzen erhöhen, wird nach wie vor debattiert (Madsen et.al, 2011.). Dies sollte bei der Anwendung der WiW-Option berücksichtigt werden.
  2. Eine eventuelle Richtwirkung des WEA-Schalls ist nicht berücksichtigt. Nach aktuellen Richtlinien vermessene Schallleistungspegel sind worst-case-Pegel, die direkt vor der WEA ermittelt wurden. Wenn eine WEA zur Seite eine geringere Schallabstrahlung hat (was aufgrund der kleineren abstrahlenden Fläche anzunehmen ist), so sind auch die Schallemissionen dort geringer. Dieser Umstand ist aber für gängige WEA kaum oder gar nicht dokumentiert.

Im unteren Bereich des Windregisters ist die Höhe über Grund für den Rezeptor anzugeben.

Für diese Höhe wird auch die Windgeschwindigkeit am Rezeptor ermittelt.


Register Windscherung

Die Angaben auf diesem Register dienen dazu, die Windgeschwindigkeit in Referenzhöhe auf Nabenhöhe umzurechnen. Hiermit kann dann der adäquate Schallleistungspegel für die WEA ausgewählt werden kann.

DE UMWELT NORD (103).png

IEC-konform: Die Standardeinstellung. Verwendet ein logarithmisches Windprofil bei einer Rauigkeitslänge von 0,05 m laut IEC 61400-11, um von der Referenzhöhe für die Windgeschwindigkeit (siehe [[NORD2000-Berechnung#Register Wind|Register Wind) auf die Nabenhöhen der WEA umzurechnen.

Aus METEO-Objekt: Verwendet die Windscherung, die auf dem Register Windscherung eines METEO-Objekts hinterlegt ist (z. B. aus Messungen in unterschiedlichen Höhen berechnet). Diese wird in aller Regel ein objektiveres Verhältnis zwischen Referenz- und Nabenhöhe repräsentieren. Die Scherungswerte liegen im METEO-Objekt sektorweise vor und so werden Sie auch in NORD2000 verwendet.

Windgradient: Angabe der (sektorunabhängigen) Windscherung über ein Power-Law-Windprofil und dessen Gradient.

Rauigkeitsklasse/-länge Angabe der (sektorunabhängigen) Windscherung über ein logarithmisches Windprofil für die angegebene Geländerauigkeit.

Mit WAsP berechnet: Vorausgewählt, wenn die Windgeschwindigkeit für WEA-Positionen mit Hilfe von WAsP ermittelt wird (Register Wind).

Zusätzlich zu den oberen Einstellungsmöglichkeiten kann die Option Stabilitätsparameter berücksichtigen aktiviert werden. Dadurch wird der gewählte Modus für die Bestimmung der Windscherung mit einer Stabilitätskorrektur versehen, basierend auf den Stabilitätsparametern aus dem Register Wetter/Stabilität. Aus stabilen und instabilen Bedingungen können extreme Windscherungen resultieren, die für die entsprechenden Windenergieanlagen einen viel höheren oder niedrigeren Schallleistungspegel nach sich ziehen können.


Register Wetter/Stabilität

In diesem Register können die meteorologischen Parameter festgelegt werden.


DE UMWELT NORD (104).png


Rel. Luftfeuchtigkeit gibt die Luftfeuchtigkeit in Prozent an.

Die Angabe der Temperatur erfolgt in Grad Celsius bezogen auf eine festgelegte Höhe über Grund.

Die Stabilitätsparameter sind nicht trivial und teilweise auch nicht für alle Standorte zu beziehen. Es wurden daher vier Standardsituationen (Tag oder Nacht sowie jeweils klar oder bedeckt) definiert. Wenn eine der vier Einstellungsmöglichkeiten gewählt wird, werden den eigentlichen Stabilitätsparametern repräsentative Werte zugewiesen.

Diese werden sichtbar, wenn das Feld neben Erweitert angehakt wird; wird zusätzlich das Häkchen Manuell eingeben gesetzt, können sie frei bestimmt werden:


DE UMWELT NORD (105).png


Turbulenzstärke (Wind) ist die Standardabweichung der Windgeschwindigkeit geteilt durch die mittlere Windgeschwindigkeit in einem 10 Minuten Intervall. Die Angabe erfolgt in Prozent.

Turbulenzstärke (Temperatur) analog zur oberen Erklärung, in Bezug auf Temperatur.

StdAbw Windfluktuationen ist die Standardabweichung der Windgeschwindigkeit, gleichermaßen beschrieben in Kapital 3 unter Messmast.

Inverse Monin-Obukhov-Länge ist eine Stabilitätslängenskala (1/m). Ein negativer Wert bedeutet eine instabile Schichtung mit großem Potential der Vermischung der Luftschichten und einer niedrigen Scherung. Ein positiver Wert bedeutet eine stabile Schichtung mit geringer Affinität zur Durchmischung der Luft und großer Scherung.

Temperaturgefälle T* ist das Gefälle des Temperaturprofils.

Die Inverse Monin-Obukhov-Länge und das Temperaturgefälle T* haben den größten Einfluss auf die Berechnung.

All diese Parameter beeinflussen die Schallausbreitung von der Windenergieanlage zum Rezeptor. Sie unterliegen Schwankungen, deshalb haben mit spezifischen Parametern durchgeführte Berechnungen nur eine kurze Gültigkeitsdauer.


Mittlere Immission / Überschreitungswahrscheinlichkeit

Die Berechnung der mittleren Immission führt Berechnungen für alle ganzzahligen Windgeschwindigkeiten in 12 Richtungssektoren durch und verwendet dann die sektoriellen Weibullverteilungen des Standorts, um die Gewichtungen zu ermitteln. Das Ergebnis kann als Mittelwert oder als Überschreitungswahrscheinlichkeit angegeben werden (z.B. L10 oder L90, wobei letzteres hier bedeuten würde, dass der Beurteilungspegel 90% der Zeit darunter liegt).

Dieser Berechnungstyp kann auch mit einer Lden-Berechnuhng kombiniert werden, wobei kein Immissionsrichtwert verwendet wird. Diese Kombination ist konform mit der WHO-Richtlinie zu Lden-Berechnuhngen.

Der Berechnungstyp Analyse nach Windrichtung/-geschwindigkeit ermöglicht die kombinierte Betrachtung für Windrichtungssektoren und Windgeschwindigkeitsbereiche in einer Berechnung.


Register Wind (Mittlere Immission)

Auf dem Register Wind wird die Zeitreihe ausgewählt, anhand derer die Gewichtung der Windgeschwindigkeiten / -richtungen ermittelt wird:


DE UMWELT NORD (106.1).png


Im Beispiel oben ist dies eine ERA5-Zeitreihe für 100m Höhe. Diese wird anhand der Eingaben auf dem Register Windscherung auf die Berechnungshöhe extrapoliert. Für das Endergebnis ist die Höhe tatsächlich weniger wichtig, da wir keine konkrete Windgeschwindigkeit betrachten, es ist also vernünftig, eine Höhe in der Nähe der Messhöhe zu wählen, um den Einfluss der Extrapolation zu reduzieren.

Wenn die Unterschiede der Windgeschwindigkeiten innerhalb der Windfarm mit WAsP modelliert werden, so wird dieser relative Unterschied auf die Windverteilung an jedem Berechnungspunkt angewandt.

Bitte beachten Sie, dass dieses Modell die Variationen der Stabilität im Tages- und Jahresverlauf nicht berücksichtigt, diese sollten also bereits in der Windgeschwindigkeitsvertielung erfasst sein. Eine Windverteilung aus einer niedrigen Messhöhe kann dieser Anforderung in der Regel nicht gerecht werden, achten Sie daher auf eine Messhöhe in der Nähe der Nabenhöhe.

Ebenfalls werden keine saisonalen Effekte auf die Geländeeigenschaften berücksichtigt.

Als Emissionen der WEA werden mittlere Schallleistungspegel (LWA) verwendet. Es sollten keine L90-Emissionsdaten verwendet werden, um ein L90-Ergebnis zu erhalten!


Schwedische Vorschrift

Die schwedischen Schallrichtlinien sind in der Schrift "Ljud från vindkraftverk" von Naturvärdsverket veröffentlicht. In der Ausgabe vom 20. April 2010 ist die Möglichkeit beschrieben, den durch Windenergieanlagen verursachten Lärm mit Hilfe von NORD200 zu berechnen.

Die Option Schwedische Vorschrift versieht die Einstellungen der NORD2000 Berechnung in WindPRO mit den Werten und Konfigurationen die in “Ljud från vindkraftverk” aufgeführt sind und belässt die Optionen, die nicht in den Vorschriften festgelegt sind, frei wählbar.


Register Wind (Schwedische Vorschrift)

Die schwedische Vorschrift sieht eine Mitwindkonstellation vor. Die Berechnung nach schwedischen Vorschriften führt eine Richtung/-geschwindigkeits-Analyse für jeden Sektor durch und wählt das lauteste Ergebnis für jeden Rezeptor aus.

Der Schallleistungspegel basiert auf der Windgeschwindigkeit 8 m/s in 10 m Höhe über Grund und wird auf Nabenhöhe skaliert unter Verwendung des IEC-Profils (Rauigkeitslänge = 0,05 m). “Ljud från vindkraftverk” lässt nicht zu, dass die Schallleistungspegel individuell für jede Anlage ermittelt werden.

Auf dem Register Wind ist lediglich die Höhe der Immissionsorte editierbar (Standardwert 1,5 m).

Anmerkung zu Tieffrequenz-Berechnungen nach Schwedischer Richtlinie Die Methodik hierfür wurde bisher noch nicht in NORD2000 implementiert, es ist aber möglich, ein Teilergebnis mit NORD2000 zu erhalten. Wählen Sie die Standard-Berechnung, markieren Sie die Checkbox Tieffrequenz-Berechnung und folgen Sie der Anleitung zu tieffrequenten Geräuschen weiter unten. Das Ergebnis kann via Ergebnis in Datei als Terzbänder (EN: "1/3 octave band") nach Excel exportiert werden. Entfernen Sie die A-Gewichtung von der resultierenden Verteilung und überprüfen Sie, ob die Werte unter den Werten der Schwedischen Richtlinie liegen.

Register Wetter/Stabilität (Schwedische Vorschrift)

Die meteorologischen Konstellationen sind nicht in "Ljud från vindkraftverk" spezifiziert. Die Optionen sind daher belassen wie hier beschrieben


Norwegische Vorschrift, worst case

Dies ist eine Implementierung der worst-case-Bedingungen wie beschrieben in der Norwegischen Richtlinie von NVE 2017-18.

Die Lden-Option wird automatisch angewählt mit der norwegischen Definition der Lden-Parameter:


DE UMWELT NORD (107.1).png


Register Wind (Norwegen, worst case)

Hier findet sich der wichtigste Unterschied zur Standard-Berechnung:


DE UMWELT NORD (107.2).png


  • Für max. Geräusch ist automatisch ausgewählt
  • Immer im Lee ist automatisch ausgewählt

Die Berechnung ist somit unabhängig von Windgeschwindigkeit und Windrichtung. Die Rezeptorhöhe ist auf 4m festgelegt, kann jedoch angepasst werden.

Die Richtlinie spezifiziert nicht, ob eine einheitliche oder Standortabhängige Windgeschwindigkeit verwendet werden soll.


Register Wetter/Stabilität (Norwegen, worst case)

  • Die Stabilitätsparameter sind festgelegt auf Nacht / Klar
  • Temperatur und Luftfeuchtigkeit können der Situation angepasst werden


Norwegische Vorschrift, realitätsnah

Dies ist eine Implementierung der real-case-Bedingungen wie beschrieben in der Norwegischen Richtlinie von NVE 2017-18. Effektiv ist dies eine Kombination des Norwegischen worst-case-Modells und der statistischen Methode Mittlere Immission / Überschreitungswahrscheinlichkeit.

Lden wird wie in der Norwegischen worst-case-Vorschrift gesetzt.

Es wird die mittlere Immission ermittelt, also der L50.


Register Wind (Norwegen, realitätsnah)

DE UMWELT NORD (107.3).png



Register Wetter/Stabilität (Norwegen, realitätsnah)

Diese Einstellungen können frei gewählt werden.


Verwendung einer WiW-Datei

Die Anwendung des Berechnungstyps Mit WiW-Datei bietet eine experimentelle Option, die es ermöglicht die Windgeschwindigkeit respektive den Schallleistungspegel bei entsprechenden Wake-Konstellationen (Nachlaufströmung) zu berücksichtigen.

Für diese Berechnung wird als Eingangsdatum eine Windgeschwindigkeit in Windfarm-Datei benötigt. Diese wird innerhalb einer PARK-Berechnung erzeugt (Kapitel 3.4.1.4). Setzen Sie einen Haken bei Erweiterte Optionen zeigen und wählen Sie ein von N.O.Jensen (RISØ/EMD) abweichendes Wake-Modell aus, danach aktivieren Sie die Box Reduzierte Windgeschw. in Windfarm.


DE UMWELT NORD (108).png


Nachdem die Berechnung abgeschlossen ist, rechtsklicken Sie auf die Kopfzeile der Berechnung und wählen Sie Ergebnis in Datei. In der Liste erscheint die Auswahl Windgeschwindigkeit in Windpark.

Klicken Sie auf Speichern als und geben Sie einen Dateinamen an, dann legen Sie die Windgeschwindigkeiten und Windrichtungen für die spätere Analyse in NORD2000 fest:


DE UMWELT NORD (109).png


Die angegebenen Windgeschwindigkeiten sind freie Windgeschwindigkeiten in Nabenhöhe. In der Ergebnisdatei wird für jede gewählte Kombination von freier Windgeschwindigkeit und Richtung angegeben, welche nicht-freie (wake-beeinflusste) Windgeschwindigkeit an den einzelnen WEA des Parks herrscht. Diese werden verwendet, um den Schallleistungspegel der WEA zu bestimmen. In der NORD2000-Berechnung werden alle Windgeschwindigkeiten und –richtungen, die in der WiW-Datei enthalten sind, durchgerechnet. Beachten Sie, dass in der NORD2000-Berechnung keine WAsP-Modellierung stattfindet und die angenommene freie Windgeschwindigkeit an allen WEA-Positionen identisch ist.

Der Berechnungstyp Mit WiW-Datei wird über das Register Hauptteil gestartet.

Das Wind-Register ist obsolet, da alle Windgeschwindigkeiten und Windrichtungen von der WiW-Datei vorgegeben werden.


Tieffrequente Geräusche

Wenn auf dem ersten Register die Option Tieffrequente Geräusche ausgewählt ist, wird die Modellierung nur für einen eingeschränkten Frequenzbereich durchgeführt. Dieser wird auf dem Register Tieffrequent konfiguriert:


DE UMWELT NORD (109.6).png


Der verfügbare Bereich geht von 10Hz bis 250Hz – unterschiedliche Richtlinien verwenden unterschiedliche Bereiche. Weiterhin kann der Typ der Schalldämmung ausgwählt werden. Wenn der Lärm für Außenbereiche (im Gegensatz zu Innenräumen) berechnet werden soll, sollte Keine Dämpfung (Außengeräusch) gewählt werden.

Es sind drei Standards für Schalldämmung hinterlegt:

  • 60% und 90%-Quantil entsprechend der "Danish EPA"-Richtlinie. Die Prozentzahlen geben den Anteil an dänischen Gebäuden an, die besser isoliert sind als der angegebene Standard.
  • Sommerhäuser (Danish EPA): Leichtbaugebäude

Knopf Ansicht/Bearb.:


DE UMWELT NORD (109.61).png


Es können eigene Werte angegeben werden, um lokalen Richtlinien Rechnung zu tragen.

Die Ergebnisse der Tieffrequenz-Einstellung werden nur für den ausgewählten Frequenzbereich angegeben.


Isophonenkarte (Schallkarte)

Für Punkt-Berechnungen, Analysen nach Windgeschwindigkeit/-richtung sowie für Berechnungen nach Schwedischer Vorschrift können zusätzlich zu den Ergebnissen für Immissionsorte auch Isophonenkarten ausgegeben werden. Dies muss auf dem Register Hauptteil explizit angewählt werden; dann erscheint ein zusätzliches Register Isophonenkarte

DE UMWELT NORD (109.7).png

Die Berechnungseinstellungen auf dem Register Isophonenkarte entsprechen weitestgehend denen der DECIBEL-Berechnung

Beachten Sie, dass die Isophonenkarten-Berechnung sehr lange dauern kann, insbesondere wenn sehr detaillierte Bodenhärte-Karten verwendet werden oder wenn für mehrere Windgeschwindigkeiten und/oder -richtungen berechnet wird.


Verwandte Themen: