|
|
Line 20: |
Line 20: |
| *[[Verdrängungshöhen-Rechner]] | | *[[Verdrängungshöhen-Rechner]] |
| *[[Hindernis-Objekt]] | | *[[Hindernis-Objekt]] |
| | <br>{{Energieinhalt}} |
| }} | | }} |
Revision as of 14:55, 11 January 2024
Zur deutschen Hauptseite | Alle deutschsprachigen Seiten
Einzelhindernisse (z.B. Gebäude, Hecken, Baumreihen) die höher als ein Viertel der Nabenhöhe sind und maximal 1000 m von einer WEA entfernt sind, sollten als Hindernis-Objekte definiert werden. Waldstücke oder Wälder in diesem Entfernungsbereich werden besser über den Verdrängungshöhen-Rechner abgebildet.
Niedrigere Einzelhindernisse/Wälder oder solche, die weiter entfernt sind, werden nicht als Hindernis-Objekte bzw. Verdrängungshöhen definiert, müssen aber in der Rauigkeitskartierung berücksichtigt werden (jedoch nicht zwingend als individuelle Objekte, sondern evtl. auch nur als Erhöhung der Rauigkeit einer größeren Fläche).
Der Hindernis-Effekt wird in der folgenden Grafik dargestellt (nach: Europäischer Windatlas, DTU/ Risø, 1989):
Die Verwendung von Verdrängungshöhen ist ein Ansatz, durch den der Effekt eines Waldes, der das Windprofil nach oben verdrängt, simuliert wird. Dabei wird für WEA oder Messmasten im Wald in der Regel die Waldhöhe als Verdrängungshöhe angenommen, für Masten und WEA, die in der Nähe des Waldes stehen, reduziert sich die Verdrängungshöhe linear in Abhängigkeit von der Windrichtung (WEA im Luv oder Lee des Waldes) und der Entfernung:
Siehe auch:
Alle Module
|
Handbuch Energieberechnungen (dieses Kapitel) auf einer Seite
|
Meteodaten-Handling (separates Handbuchkapitel)
|
Diese Seite: Hindernisse und Verdrängungshöhen in Energieberechnungen
|
|
|
Energieberechnungen Einführung ♦ Datengrundlage (Windmessungen, Regionale Windstatistiken, Vorinstallierte Windstatistiken, Global Wind Atlas, Mesoskalen-Winddaten, Geländedaten, Verwenden von Online-Rauigkeitsdaten, WEA)
|
Scaler: |
Einführung ♦ Scaler vs. regionale Windstatistik ♦ Gelände-Scaling ♦ RIX-Einstellungen ♦ Verdrängungshöhe ♦ Turbulenz ♦ Post-Kalibrierung
|
PARK: |
Überblick ♦ Wakeverlust-Modell ♦ PARK-Berechnungstypen (Alle, WAsP, WAsP-CFD, Ressourcenkarte, Meso-Daten-Zeitreihe, Messdaten-Zeitreihe) ♦ PARK-Ergebnisse ♦ WakeBlaster
|
Register in PARK: Optionen (Standard) ♦ Optionen (Scaler) ♦ Wake (nur bei Scaler) ♦ WEA ♦ Wind ♦ Scaler ♦ WEA<>Winddaten ♦ CFD-Ergebnisdateien ♦ WEA<>Windstatistik ♦ Ressource-Dateien ♦ Blockage ♦ Curtailment ♦ Verdrängungshöhe ♦ Register RIX ♦ Leistungskennlinie ♦ Kosten ♦ WakeBlaster (nur bei Scaler) ♦ 2.9 Zeitliche Variation
|
Langzeitkorrektur (MCP) |
Überblick ♦ Zeitreihen ♦ Einstellungen Session ♦ Justierung ♦ Modell-Input ♦ Konzept-Wahl ♦ Ergebnis als Langzeitreihe (Methoden: Einfaches WG-Scaling, Regression, Matrix, Neuronales Netz ♦ Solver basiert) ♦ Ergebnis als Kurzzeitreihe (Methode: Skalierung der lokalen Zeitreihe) ♦ Session-Überblick ♦ MCP-Berichte
|
Module und Werkzeuge für vorbereitende Berechnungen |
Überblick ♦ Verdrängungshöhen-Rechner ♦ ORA ♦ RIX-Korrektur ♦ METEO (Berechnungsmodul) ♦ ATLAS ♦ WAsP interface ♦ WAsP-CFD ♦ RESOURCE ♦ STATGEN ♦ Kontakt zu anderen CFD-Programmen ♦ LOSS & UNCERTAINTY ♦ →Ergebnislayer
|
Validierungswerkzeuge für Modelle und Daten |
Überblick ♦ →METEO-Objekt ♦ →METEO-Analyzer ♦ MCP ♦ →PERFORMANCE CHECK ♦ T-RIX (DE)
|
Validierungen (Englisch) |
MCP-Validierung ♦ Mesodaten Langzeitkonsistenz ♦ Wakemodell-Validierungstests
|